Skip to main content
Log in

Anti-Oxidative Effects of Theophylline on Human Neutrophils Involve Cyclic Nucleotides and Protein Kinase A

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The effects were studied of the non-specific phosphodiesterase inhibitor, theophylline (37.5-300 μM), on intracellular levels of cyclic adenosine monophosphate (cAMP) and superoxide generation following exposure of human neutrophils to four different stimuli of neutrophil membrane-associated oxidative metabolism, each of which utilizes a different transductional mechanism to activate NADPH-oxidase, in vitro. Exposure of neutrophils to FMLP (1 μM), the calcium ionophore A23187 (1 μM), and opsonized zymosan (OZ, 0.5 mg/ml) was accompanied by activation of superoxide production and increased concentrations of intracellular cAMP. Inclusion of theophylline resulted in augmentation of cAMP and inhibition of superoxide production by these stimuli. These negative effects of theophylline on neutrophil superoxide generation were mimicked by dibutyryl cAMP and 8-bromo-cGMP, while the inhibitory activity of all 3 agents was antagonized by the protein kinase A inhibitor KT 5720, but not by the G-kinase inhibitor KT 5823. Unlike FMLP, OZ and A23187, intracellular cAMP levels did not increase in cells activated with phorbol-12-myristate-13-acetate (PMA, 25 ng/ml), while oxidant production activated by this stimulus was insensitive to the inhibitory effects of theophylline. These observations suggest that the beneficial, anti-inflammatory interactions of theophylline with human nuetrophils are related to the phosphodiesterase inhibitory properties of this agent, and are selective for those pro-inflammatory stimuli which elevate cAMP, resulting in enhanced activity of protein kinase A and inhibition of the production of potentially harmful reactive oxidants by these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Weinberger, M., and L. Hendeles. 1996. Theophylline in asthma. N. Engl. J. Med. 334:1380–1388.

    Article  PubMed  Google Scholar 

  2. Barnes, P. J., and R. A. Pauwels. 1994. Theophylline in the management of asthma: time for reappraisal? Eur. Respir. J. 7:579–591.

    Article  PubMed  Google Scholar 

  3. Persson, C. G. A., and R. Pauwels. 1991. Pharmacology of anti-asthma xanthines. In: Pharmacology of Asthma (Eds. C. P. Page and P. J. Barnes), pp. 207–225. Springer-Verlag, London.

    Google Scholar 

  4. Kidney, J., M. Dominguez, P. M. Taylor, M. Rose, K. F. Chung, and P. J. Barnes. 1995. Immunomodulation by theophylline in asthma. Demonstration by withdrawal of therapy. Am. J. Respir. Crit. Care Med. 151:1907–1914.

    PubMed  Google Scholar 

  5. Kraft, M., J. A. Torvik, J. B., Trudeau, S. E. Wenzel, and R. J. Martin. 1996. Theophylline: potential antiinflammatory effects in nocturnal asthma. J. Allergy Clin. Immunol. 97:1242–1246.

    PubMed  Google Scholar 

  6. Sullivan, P., S. Bekir, Z. Jaffar, C. Page, P. Jeffrey, and J. Costello. 1994. Anti-inflammatory effects of low dose oral theophylline in atopic asthma. Lancet 343:1006–1008.

    Article  PubMed  Google Scholar 

  7. Ward, A. J. M., M. Mckennif, J. M. Evans, C. P. Page, and J. F. Costello. 1993. Theophylline-an immunomodulatory role in asthma? Am. Rev. Respir. Dis. 147:518–523.

    PubMed  Google Scholar 

  8. Ohta, K., S. Sawamoto, M. Nakajima, S. Kubota, Y. Tanaka, T. Miyakasa, A. Nagai, K. Hirai, K. Mano, and H. Miyashita. 1996. The prolonged survival of human eosinophils with interleukin-5 and its inhibition by theophylline via apoptosis. Clin. Exp. Allergy, 26(Suppl. 2):10–15.

    PubMed  Google Scholar 

  9. Spatafora, M., G. Chiappara, A. M. Merendino, D. D'Amico, V. Bellia, and G. Bonsignore. 1994. Theophylline suppresses the release of tumour necrosis factor-α by blood monocytes and alveolar macrophages. Eur. Respir. J. 7:223–228.

    Article  PubMed  Google Scholar 

  10. Dent, G., M. A. Giembycz, K. F. Rabe, B. Wolf, P. J. Barnes, and H. Magnussen. 1994. Theophylline suppresses human alveolar macrophage respiratory burst through phosphodiesterase inhibition. Am. J. Respir. Cell Mol. Biol. 10:565–572.

    PubMed  Google Scholar 

  11. Nielson, C. P., J. J. Crowley, M. E. Morgan, and R. E. Vestal. 1988. Polymorphonuclear leukocyte inhibition by therapeutic concentrations of theophylline is mediated by cyclic-3′,5′-adenosine monophosphate. Am. Rev. Respir. Dis. 137:25–30.

    PubMed  Google Scholar 

  12. De Togni, P., G. Cabrini, and F. Di Virgilio. 1984. Cyclic AMP inhibition of fMet-Leu-Phedependent metabolic responses in human neutrophils is not due to its effects on cytosolic Ca2+. Clin. Exp. Immunol. 224:629–635.

    Google Scholar 

  13. Kaneko, M., K. Suzuki, H. Furui, K. Takagi, and T. Satake. 1990. Comparison of theophylline and enprofylline effects on human neutrophil superoxide production. Clin. Exp. Pharmacol. Physiol. 17:849–859.

    PubMed  Google Scholar 

  14. Kato, M., A. Morikawa, H. Kimura, T. Shimizu, M. Nakano, and T. Kuroume. 1991. Effects of antiasthma drugs on superoxide anion generation from human polymorphonuclear leucocytes or hypoxanthine-xanthine oxidase system. Int. Arch. Allergy Appl. Immunology. 96:128–133.

    Google Scholar 

  15. Llewellyn-Jones, C. G., and R. A. Stockley. 1994. The effects of B2-agonists and methyl-xanthines on neutrophil function in vitro. Eur. Respir. J. 7:1460–66.

    Article  PubMed  Google Scholar 

  16. Minkenberg, I., and E. Ferber. 1984. Lucigenin-dependent chemiluminescence as a new assay for NADPH-oxidase activity in particulate fractions of human polymorphonuclear leucocytes. J. Immunol. Meth. 71:61–67.

    Article  Google Scholar 

  17. Kase, H., K. Iwahasi, S. Nakanishi, Y. Matsuda, K. Yamada, M. Takahashi, C. Murakata, A. Sato, and M. Kaneko. 1987. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Comm. 142:436–440.

    PubMed  Google Scholar 

  18. Holmsen, H. E., E. Storm, and H. J. Day. 1972. Determination of ATP and ADP in blood platelets: a modification of the firefly luciferase assay for plasma. Anal. Biochem. 46:481–502.

    Google Scholar 

  19. Dianzani, C., S. Brunelleschi, I. Viano, and R. Fantozzi. 1994. Adenosine modulation of primed human neutrophils. Eur. J. Pharmacol. 263:223–226.

    Article  PubMed  Google Scholar 

  20. Cronstein, B. N., S. B. Kramer, G. Weissmann, and R. Hirschhorn. 1983. Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. J. Exp. Med. 158:1160–1177.

    Article  PubMed  Google Scholar 

  21. Verghese, M. W., K. Fox, L. C. McPhail, and R. Snyderman. 1985. Chemo-attractantelicited alterations of cAMP levels in human polymorphonuclear leucocytes require a Ca2+-dependent mechanism which is independent of transmembrane activation of adenylate cyclase. J. Biol. Chem. 260:6769–6775.

    PubMed  Google Scholar 

  22. Schudt, C., H. Tenor, and A. Hatzelman. 1995. PDE isoenzymes as targets for anti-asthma drugs. Eur. Respir. J. 8:1179–1183.

    Article  PubMed  Google Scholar 

  23. Barnes, P. J. 1995. Cyclic nucleotides and phosphodiesterases and airway function. Eur. Respir. J. 8:457–462.

    Article  PubMed  Google Scholar 

  24. Francis, S. H., B. D. Noblett, B. W. Todd, J. Y. Wells, and J. D. Corbin. 1988. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol. Pharmacol. 34:506–517.

    PubMed  Google Scholar 

  25. Lincoln, T. M., T. L. Cornwell, and A. E. Taylor. 1990. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am. J. Physiol. 258:C399–C407.

    PubMed  Google Scholar 

  26. Lagast, H., T. Pozzan, F. A. Waldvogel, and P. D. Lew. 1984. Phorbol myristate acetate stimulates ATP-dependent calcium transport by the plasma membrane of neutrophils. J. Clin. Invest. 73:878–883.

    PubMed  Google Scholar 

  27. Naccache, P. H., T. F. P. Molski, P. Borgeat, J. R. White, and R. I. Sah'afi. 1985. Phorbol esters inhibit the fmet-leu-phe and leukotriene B4-stimulated calcium mobilisation and enzyme secretion in rabbit neutrophils. J. Biol. Chem. 260:2125–2131.

    PubMed  Google Scholar 

  28. Tao, J., J. S. Johansson, and D. H. Haynes. 1992. Stimulation of dense tubular Ca2+ uptake in human platelets by cAMP. Biochim. Biophys. Acta. 1105:29–39.

    PubMed  Google Scholar 

  29. Johansson, J. S., L. E. Nied, and D. H. Haynes. 1992. Cyclic AMP stimulates Ca2+-ATPase-mediated Ca2+ extrusion from human platelets. Biochim. Biophys. Acta. 1105:19–28.

    PubMed  Google Scholar 

  30. Johansson, J. S., and D. H. Haynes. 1992. Cyclic GMP increases the rate of the calcium extrusion pump in intact human platelets but has no direct effect on the dense tubular calcium accumulation system. Biochim. Biophys. Acta. 1105:40–50.

    PubMed  Google Scholar 

  31. Hettasch, J. M., and G. C. Le Breton. 1987. Modulation of Ca2+ fluxes in isolated platelet vesicles: effects of cAMP-dependent protein kinase inhibitor on Ca2+ sequestration and release. Biochim. Biophys. Acta. 931:49–58.

    Article  PubMed  Google Scholar 

  32. Ahmed, M. U., K. Hazeki, O. Hazeki, T. Katada, and M. Ui. 1995. Cyclic AMP-increasing agents intefere with chemoattractant-induced respiratory burst in neutrophils as a result of the inhibition of phosphatidylinositol 3-kinase rather than receptor-operated Ca2+ influx. J. Biol. Chem. 270:23816–23822.

    Article  PubMed  Google Scholar 

  33. Schudt, C., S. Winder, S. Forderkunz, A. Hatzelmann, and V. Ullrich. 1991. Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai. Naunyn-Shmiedebergs Arch. Pharmacol. 344:682–690.

    Google Scholar 

  34. Villagrasa, V., C. Navarette, C. Sanz, L. Berto, M. Perpina, J. Cortijo, and E. J. Morcillo. 1996. Inhibition of phosphodiesterase IV and intracellular calcium levels in human polymorphonuclear leukocytes. Meth. Find. Exp. Clin. Pharmacol. 18:239–245.

    Google Scholar 

  35. Fahy, J. V., K. W. Kim, J. Liu, and H. A. Boushey. 1995. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J. Allergy. Clin. Immunol. 95:843–852.

    PubMed  Google Scholar 

  36. Lamblin, C., P. Gosset, I. Tillie-Leblond, F. Saulnier, C.-H. Marquette, B. Walleart, and A. B. Tonnel. 1998. Bronchial neutrophilia in patients with noninfectious status asthmaticus. Am. J. Respir. Crit. Care Med. 157:394–402.

    PubMed  Google Scholar 

  37. Zurier, R. B., G. Weissmann, S. Hoffstein, S. Kammerman, and H.-H. Tai. 1974. Mechanisms of lysozomal enzyme release from human leukocytes, II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J. Clin. Invest. 53:297–309.

    PubMed  Google Scholar 

  38. Moore, A. R., and D. A. Willoughby. 1995. The role of cAMP-regulation in controlling inflammation. Clin. Exp. Immunol. 101:387–389.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahomed, A.G., Theron, A.J., Anderson, R. et al. Anti-Oxidative Effects of Theophylline on Human Neutrophils Involve Cyclic Nucleotides and Protein Kinase A. Inflammation 22, 545–557 (1998). https://doi.org/10.1023/A:1022306328960

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022306328960

Keywords

Navigation