Skip to main content
Log in

Binding of Latent Matrix Metalloproteinase 9 to Fibrin: Activation via a Plasmin-Dependent Pathway

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The binding of two matrix metalloproteinases (MMP) to fibrin was evaluated. MMP-2 (72-kDa) and MMP-9 (92-, 130-, and 225-kDa) were selected since both contain a fibronectin-like region and fibronectin binds fibrin. Gelatin zymography indicated selective and dose dependent binding of MMP-9 to fibrin. No MMP-2 binding to fibrin occurred. Densitometry revealed that the 130- and 225-kDa forms demonstrated similar sigmoidal binding profiles whereas 92-kDa uptake was hyperbolic. Fibronectin and TIMP-1 competition studies indicated that the fibronectin and C-terminal MMP-9 domains, respectively, were not involved with fibrin binding. The MMP-9 collagen-like region may be of regulatory significance since type I and II fibrillar and type IV basement membrane collagens demonstrated fibrin binding. During fibrinolysis, latent fibrin-bound MMP-9 was processed to lower molecular weight forms consistent with proteolytic activation. This process was inhibited by ∈-aminocaproic acid, indicating a plasmin-dependent pathway. The significance of these findings to procoagulant activity and MMP-mediated extracellular matrix destruction during inflammation and tumor invasion and metastasis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Woessner, J. F., Jr. 1994. The family of matrix metalloproteinases. Ann. N. Y. Acad. Sci. 731:11–21.

    Google Scholar 

  2. Nagase, H. 1996. Matrix metalloproteinases. In: Zinc Metalloproteinases in Health and Disease, N. M. Hooper, ed. Taylor and Francis, London, England. pp. 153–204.

    Google Scholar 

  3. Stetler-Stevenson, W. G., S. Aznavoorian, and L. S. Liotta. 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann. Rev. Cell Biol. 9:541–573.

    PubMed  Google Scholar 

  4. Cliffton, E. E., and D. Agostino. 1965. The effects of fibrin formation and alterations in the clotting mechanism on the development of metastases. Vasc. Dis. 2:43–52.

    Google Scholar 

  5. Dvorak, H. F. 1986. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl. J. Med. 315:1650–1659.

    PubMed  Google Scholar 

  6. Wysocki, A. B., L. Staiano-Coico, and F. Grinnell. 1993. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J. Invest. Dermatol. 101:64–68.

    Article  PubMed  Google Scholar 

  7. Mignatti, P., and D. B. Rifkin. 1996. Plasminogen activators and matrix metalloproteinases in angiogenesis. Enz. Prot. 49:117–137.

    Google Scholar 

  8. DeClerck, Y. A., and W. E. Laug. 1996. Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression. Enz. Prot. 49:72–84.

    Google Scholar 

  9. Rickles, F. R., and R. L. Edwards. 1983. Activation of blood coagulation in cancer: Trousseau's syndrome revisited. Blood 62:14–31.

    PubMed  Google Scholar 

  10. Egyud, L. G., and B. Lipinski. 1991. Significance of fibrin formation and dissolution in the pathogenesis and treatment of cancer. Med. Hypoth. 36:336–340.

    Article  Google Scholar 

  11. Tryggvason, K., M. Hoyhtya, and T. Salo. 1987. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim. Biophys. Acta. 907:191–217.

    Article  PubMed  Google Scholar 

  12. Mignatti, P., and D. B. Rifkin. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73:161–195.

    PubMed  Google Scholar 

  13. Koolwijk, P. A., M. M. Miltenburg, M. G. M. van Erck, M. Oudshoorn, M. J. Niedbala, F. C. Breedveld, and V. W. M. van Hinsbergh. 1995. Activated gelatinase-B (MMP-9) and urokinase-type plasminogen activator in synovial fluids of patients with arthritis. Correlation with clinical and experimental variable of inflammation. J. Rheumatol. 22:385–393.

    PubMed  Google Scholar 

  14. Brown, D. L., M. S. Hibbs, M. Kearney, C. Loushin, and J. M. Isner. 1995. Identification of 92-kDa gelatinase in human coronary atherosclerotic lesions. Circulation 91:2125–2131.

    PubMed  Google Scholar 

  15. Van Wart, H. E., and H. Birkedal-Hansen. 1990. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U.S.A. 87:5578–5582.

    PubMed  Google Scholar 

  16. Nagase, H. 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378:151–160.

    PubMed  Google Scholar 

  17. Mazzieri, R., L. Masiero, L. Zanetta, S. Monea, M. Onisto, S. Garbisa, and P. Mignatti. 1997. Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J. 16:2319–2332.

    Article  PubMed  Google Scholar 

  18. Ginestra, A., S. Monea, G. Seghezzi, V. Dolo, H. Nagase, P. Mignatti, and M. L. Vittorelli. 1997. Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J. Biol. Chem. 272:17216–17222.

    Article  PubMed  Google Scholar 

  19. Rakoczi, I., B. Wiman, and D. Collen. 1978. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim. Biophys. Acta. 540:295–300.

    PubMed  Google Scholar 

  20. Liotta, L. A., R. H. Goldfarb, R. Brundage, G. P. Siegal, V. Terranova, and S. Garbisa. 1981. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 41:4629–4636.

    PubMed  Google Scholar 

  21. Pepper, M. S., A. P. Sappino, R. Stocklin, R. Montesano, L. Orci, and J. D. Vassalli. 1993. Upregulation of urokinase receptor expression on migrating endothelial cells. J. Cell Biol. 122:673–684.

    Article  PubMed  Google Scholar 

  22. Hoylaerts, M., D. C. Rijken, H. R. Lijnen, and D. Collen. 1982. Kinetics of the activation of plasminogen by human tissue plasminogen activator. J. Biol. Chem. 257:2912–2919.

    PubMed  Google Scholar 

  23. Blasi, F., M. P. Stoppelli, and M. V. Cubellis. 1986. The receptor for urokinase plasminogen activator. J. Cell Biochem. 32:179–186.

    PubMed  Google Scholar 

  24. Blasi, F., J-D. Vassalli, and K. Dano. 1987. Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J. Cell Biol. 104:801–804.

    Article  PubMed  Google Scholar 

  25. Moscatelli, D., and D. B. Rifkin. 1988. Membrane and matrix localization of proteinases: a common theme in tumor cell invasion and angiogenesis. Biochim. Biophys. Acta 948:67–85.

    Article  PubMed  Google Scholar 

  26. Brooks, P. C., S. Stromblad, L. C. Sanders, T. L. von Schalscha, and R. T. Aimes. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with the integrin αvβ3. Cell 85:683–693.

    Article  PubMed  Google Scholar 

  27. Monsky, W. L., T. Kelly, C. Y. Lin, Y. Yeh, W. G. Stetler-Stevenson, S. C. Mueller, and W. T. Chen. 1993. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53:3159–3164.

    PubMed  Google Scholar 

  28. Murphy, G., F. Willenbock, R. V. Ward, M. I. Crockett, D. Eaton, and A. J. Docherty. 1992. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem. J. 283:637–641.

    PubMed  Google Scholar 

  29. Okada, Y., J. P. Bellocq, N. Rouyer, M. P. Chenard, M. C. Rio, P. Chambon, and P. Basset. 1995. Membrane-type metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, head and neck carcinomas. Proc. Natl. Acad. Sci. U.S.A. 92:2730–2734.

    PubMed  Google Scholar 

  30. Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature 370:61–65.

    Article  PubMed  Google Scholar 

  31. Stathakis, N. E., M. W. Mosesson, A. B. Chen, and D. K. Galanakis. 1978. Cryoprecipitation of fibrin-fibrinogen complexes induced by the cold-insoluble globulin of plasma. Blood 51:1211–1222.

    PubMed  Google Scholar 

  32. Hibbs, M. S., K. A. Hasty, J. M. Seyer, A. H. Kang, and C. L. Mainardi. 1985. Biochemical and immunological characterization of the secreted forms of neutrophil gelatinase. J. Biol. Chem. 260:2493–2500.

    PubMed  Google Scholar 

  33. Vartio, T., and M. Baumann. 1989. Human gelatinase/type IV procollagenase is a regular plasma component. FEBS Lett. 255:285–289.

    Article  PubMed  Google Scholar 

  34. Makowski, G. S., and M. L. Ramsby. 1996. Calibrating gelatin zymograms with human gelatinase standards. Anal. Biochem. 236:353–356.

    Article  PubMed  Google Scholar 

  35. Bodden, M. K., G. J. Harber, B. Birkedal-Hansen, L. J. Windsor, N. C. M. Caterina, J. A. Engler, and H. Birkedal-Hansen. 1994. Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases). J. Biol. Chem. 269:18943–18952.

    PubMed  Google Scholar 

  36. Markert, M., P. C. Andrews, and B. M. Babior. 1984. Measurement of O 2 production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Meth. Enzymol. 105:358–365.

    PubMed  Google Scholar 

  37. Clauss, A. 1957. Rapid physiological coagulation method for the determination of fibrinogen. Acta. Haematol. 17:237–246.

    PubMed  Google Scholar 

  38. Regoeczi, E. 1968. Occlusion of plasma proteins by human fibrin: studies using trace-labelled proteins. Br. J. Haematol. 14:279–290.

    PubMed  Google Scholar 

  39. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  40. Heussen, C., and E. B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102:196–202.

    PubMed  Google Scholar 

  41. Makowski, G. S., and M. L. Ramsby. 1993. pH modification to enhance the molecular seiving properties of sodium dodecyl sulfate-10% polyacrylamide gels. Anal. Biochem. 212:283–285.

    Article  PubMed  Google Scholar 

  42. Lucas, M. A., L. J. Fretto, and P. A. McKee. 1983. Binding of human plasminogen to fibrin and fibrinogen. J. Biol. Chem. 258:4249–4256.

    PubMed  Google Scholar 

  43. Francis, C. W., V. J. Marder, and G. H. Barlow. 1980. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model of their structure. J. Clin. Invest. 66:1033–1043.

    PubMed  Google Scholar 

  44. Fearnley, G. R., and J. M. Tweed. 1952. Evidence of an active fibrinolytic enzyme in the plasma of normal people with observation on inhibition associated with the presence of calcium. Clin. Sci. 1953; 12:81–89.

    Google Scholar 

  45. Chakrabarti, R., M. Bielawiec, J. F. Evans, and G. R. Fearnley. 1968. Methodological study and a recommended technique for determining the euglobulin lysis time. J. Clin. Pathol. 21:698–701.

    PubMed  Google Scholar 

  46. Goldberg, G. I., B. L. Marmer, G. A. Grant, A. Z. Eisen, S. Wilhelm, and C. He. 1989. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloprotease designated TIMP-2. Proc. Natl. Acad. Sci. U.S.A. 86:8207–8211.

    PubMed  Google Scholar 

  47. Murphy, G., and T. Crabbe. 1995. Gelatinases A and B. Meth. Enzymol. 248:470–484.

    PubMed  Google Scholar 

  48. Strongin, A., I. Collier, P. Krasnov, L. Teresa Genrich, B. Marmer, and G. Goldberg. 1993. Human 92 kDa type IV collagenase: functional analysis of fibronectin and carboxyl-end domains. Kidney Intl. 43:158–162.

    Google Scholar 

  49. Preissner, K. T. 1989. The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. Blut 59:419–431.

    Article  PubMed  Google Scholar 

  50. Mirshahi, M., J. Soria, H. Lu, C. Soria, M. Samama, and J. P. Caen. 1988. Defective thrombolysis due to collagen incorporation in fibrin clots. Thromb. Res. S8:73–80.

    Article  Google Scholar 

  51. Grinnell, F., M. Feld, and D. Minter. 1980. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell 19:517–525.

    Article  PubMed  Google Scholar 

  52. Steffen, L. W., and B. W. Steffen. 1976. Improved method for measuring fibrinogen in plasma, with use of a plasmin inhibitor. Clin. Chem. 22:381–383.

    PubMed  Google Scholar 

  53. Richardson, D. L., D. S. Pepper, and A. B. Kay. 1976. Chemotaxis for human monocytes by fibrinogen-derived peptides. Br. J. Haematol. 32:507–513.

    PubMed  Google Scholar 

  54. Wachtfogel, Y. T., W. Abrams, U. Kucich, G. Weinbaum, M. Schapira, and R. W. Colman. 1988. Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation. J. Clin. Invest. 81:1310–1316.

    PubMed  Google Scholar 

  55. Rowland, F. N., M. J. Donovan, P. T. Picciano, G. D. Wilner, and D. L. Kreutzer. 1984. Fibrin-mediated vascular injury: identification of fibrin peptides that mediate endothelial cell retraction. J. Pathol. 117:P418–428.

    Google Scholar 

  56. Ramsby, M. L., and D. L. Kreutzer. 1993. Fibrin induction of tissue plasminogen activator in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34:3207–3219.

    PubMed  Google Scholar 

  57. Ramsby, M. L., and D. L. Kreutzer. 1993. Fibrin induction of thrombospondin in corneal endothelial cell in vitro. Invest. Ophthalmol. Vis. Sci. 34:165–174.

    PubMed  Google Scholar 

  58. Ramsby, M. L., and D. L. Kreutzer. 1994. Fibrin induction of interleukin-8 (IL-8) in corneal endothelial cell in vitro. Invest. Ophthalmol. Vis. Sci. 35:3980–3990.

    PubMed  Google Scholar 

  59. Salo, T., M. Makela, M. Kylmaniemi, H. Autio-Harmainen, and H. Larjava. 1994. Expression of matrix metalloproteinase-2 and-9 during early wound healing. Lab. Invest. 70:176–182.

    PubMed  Google Scholar 

  60. Matsubara, M., M. T. Girard, C. L. Kublin, C. Cintron, and M. E. Fini. 1991. Differential roles for two gelatinolytic enzymes of the matrix metalloproteinase family in the remodelling cornea. Dev. Biol. 147:425–439.

    PubMed  Google Scholar 

  61. Brown, L. F., A. M. Dvorak, and H. F. Dvorak. 1989. Leaky vessels, fibrin deposition, and fibrosis: a sequence of events common to solid tumors and many other types of disease. Am. Rev. Respir. Dis. 140:1104–1107.

    PubMed  Google Scholar 

  62. Galis, Z. S., G. K. Sukova, M. W. Lark, and P. Libby. 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94:2493–2503.

    PubMed  Google Scholar 

  63. Young, P. K., and F. Grinnell. 1994. Metalloproteinase activation cascade after burn injury: a longitudinal analysis of the human wound environment. J. Invest. Dermatol. 103:660–664.

    Article  PubMed  Google Scholar 

  64. Collier, I. E., S. M. Wilhelm, A. Z. Eisen, B. L. Marmer, G. A. Grant, J. L. Seltzer, A. Kronberger, C. He, E. Bauer, and G. I. Goldberg. 1988. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloproteinase capable of degrading basement membrane collagen. J. Biol. Chem. 263:6579–6587.

    PubMed  Google Scholar 

  65. Keski-Oja, J., J. Lohi, A. Tuuttila, K. Tryggvason, and T. Vartio. 1992. Proteolytic processing of the 72,000-Da type-IV collagenase by urokinase plasminogen activator. Exp. Cell Res. 202:471–476.

    Article  PubMed  Google Scholar 

  66. Morodomi, T., Y. Ogata, Y. Sasaguri, M. Morimatsu, and H. Nagase. 1992. Purification and characterization of matrix metalloproteinase-9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem. J. 285:603–611.

    PubMed  Google Scholar 

  67. Okada, Y., T. Morodomi, J. J. Enghild, K. Suzuki, A. Yasui, I. Nakanishi, G. Salvesen, and H. Nagase. 1990. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur. J. Biochem. 194:721–730.

    PubMed  Google Scholar 

  68. Lijnen, H. R., and D. Collen. 1982. Interaction of plasminogen activators and inhibitors with plasminogen and fibrin. Sem. Thromb. Hemost. 8:2–10.

    Google Scholar 

  69. Murphy, G., S. Atkinson, R. Ward, J. Gavrilovic, and J. J. Reynold. 1992. The role of plasminogen activators in the regulation of connective tissue metallproteinases. Ann. N. Y. Acad. Sci. 667:1–12.

    Google Scholar 

  70. Dvorak, H. F., D. R. Senger, and A. M. Dvorak. 1983. Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metast. Rev. 2:41–73.

    Google Scholar 

  71. Dvorak, H. F., A. M. Dvorak, E. J. Manseau, L. Wiberg, and W. H. Churchill. 1979. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. J. Natl. Cancer Inst. 62:1459–1472.

    PubMed  Google Scholar 

  72. Nagy, J. A., L. F. Brown, D. R. Senger, N. Lanir, L. Van De Water, A. M. Dvorak, and H. F. Dvorak. 1988. Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim. Biophys. Acta. 948:305–326.

    Article  Google Scholar 

  73. Cardinali, M., R. Uchino, and S. I. Chung. 1990. Interaction of fibrinogen with murine melanoma cells: covalent association with cell membranes and protection against recognition by lymophine-activated killer cells. Cancer Res. 50:8010–8016.

    PubMed  Google Scholar 

  74. Fesus, L., and K. Laki. 1976. On coupling bovine fibrinogen to the surface of malignant murine plasma cells by means of transglutaminase. Biochem. Biophys. Res. Comm. 72:131–137.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowski, G.S., Ramsby, M.L. Binding of Latent Matrix Metalloproteinase 9 to Fibrin: Activation via a Plasmin-Dependent Pathway. Inflammation 22, 287–305 (1998). https://doi.org/10.1023/A:1022300216202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022300216202

Keywords

Navigation