Skip to main content
Log in

Associations between canopy and understory species increase along a rainshadow gradient in the Alps: habitat heterogeneity or facilitation?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Spatialassociations among overstory and understory species tend to increase ongradients from wet to dry climates. This shift in the strength of spatialassociations has usually been attributed to shared abiotic requirements betweencanopy species and understory assemblages within communities and/or to anincrease in habitat heterogeneity in dry climates and therefore higher betadiversity. On another hand, more important positive effects of tree canopies onunderstory species in drier climates may also explain stronger associations andhigher beta diversity. We examined these three hypotheses along a strongrainshadow gradient that occurs from the wet external Alps to the dry innerAlpsby analyzing with correspondence analysis and canonical correspondence analysisthe species composition of 290 relevés of forests dominated to differentdegrees by Abies alba and Piceaabies.We found important differences in climatic requirements forAbies and Picea, withAbies occurring in warmer and drier habitats thanPicea. The understory species associated with these twospecies showed similar correlations with temperature but not with moisture,withunderstory species of Picea-communities having strongerxeric affinities than understory species ofAbies-communities. We found no significant associationsbetween canopy species and understory composition in the external Alps despitethe fact that Abies and Piceaoccurredin substantially different environments. In contrast,Abiesand Picea occurred in more similar environments in theinner Alps, but the understory assemblages associated with eitherAbies or Picea were significantlydifferent. This increase in canopy-understory associations was in partdetermined by strong differences in moisture between southern and northernaspects in the inner Alps, which affected both canopy and understory speciesdistributions. However, differences between the canopy effects ofPicea and Abies also appeared tocontribute to stronger associations between canopy and understory species, andconsequently to increase beta diversity. This pattern only occurred on southernaspects of the inner Alps but was highly significant. Our results suggest thatspecies distributions may be continuous on the wet ends of moisture gradientsbut discrete on dry ends. Relatively discrete communities at stressful ends ofgradients appear to develop as a result of both habitat differentiation and thepositive effects of overstory species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi A.A. and Clark V. 1990. Computer-aided multivariate analysis. Lifetime Learning Publications, Belmont.

    Google Scholar 

  • Alban D.H. 1982. Effects of nutrient accumulation by aspen, spruce and pine on soil properties. Soil Science Society of American Journal 46: 853–861.

    Google Scholar 

  • Austin M.P. 1985. Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16: 39–61.

    Google Scholar 

  • Bartoli Ch. 1966. Etudes écologiques sur les associations forestières de la Haute-Maurienne. Annales des Sciences Forestières 23: 433–479.

    Google Scholar 

  • Barkman J.J. 1978. Synusial approaches to classification. In: Whittaker R.H. (ed.), Classification of Plant Communities. Junk, The Hague, pp. 111–165.

    Google Scholar 

  • Beatty S.W. 1984. Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65: 1406–1419.

    Google Scholar 

  • Becker M. 1989. The role of climate on present and past vitality of silver fir forests in the Vosges mountains of northeastern France. Canadian Journal of Forest Research 19: 1110–1117.

    Google Scholar 

  • Berkowitz A.R., Canham C.D. and Kelly V.R. 1995. Competition vs. facilitation of tree seedling growth and survival in early successional communities. Ecology 76: 1156–1168.

    Google Scholar 

  • Bert G.D. and Becker M. 1990. Dendroécologie du sapin dans le Jura. Annales des Sciences Forestières 47: 395–412.

    Google Scholar 

  • Bertness M.D. and Callaway R.M. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9: 191–193.

    Google Scholar 

  • Boettcher S.E. and Kalisz P.J. 1990. Single-tree influence on soil properties in the mountains of eastern Kentucky. Ecology 71: 1365–1372.

    Google Scholar 

  • Bond B.J., Farnsworth B.T., Coulombe R.A. and Winner W.E. 1999. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia 120: 183–192.

    Google Scholar 

  • Bradfield G.E. and Scagel A. 1984. Correlations among vegetation strata and environmental variables in subalpine spruce-fir forests, southeastern British Columbia. Vegetatio 55: 105–114.

    Google Scholar 

  • Bratton S.P. 1975. A comparison of the beta diversity functions of the overstory and herbaceous understory of a deciduous forest. Bulletin of Torrey Botanical Club 102: 55–60.

    Google Scholar 

  • Braun-Blanquet J. 1932. Plant sociology, the study of plant communities. Mc Graw-Hill, New York, Transl. By G.D. Füller and H.S. Connard.

    Google Scholar 

  • Braun-Blanquet J., Pallmann H. and Bach R. 1954. Pflanzenzosiologische und Bodenkundliche Untersuchungen in Schweizerischen Nationalpark und seine Nachgebieten II. Ergebnung Wissenschaftlen Untersuchungen Schweizer Nationalparks 4: 1–199.

    Google Scholar 

  • Brooker R.W. and Callaghan T.V. 1998. The balance between positive and negative plant interactions and its relationships to environmental gradients: a model. Oikos 81: 196–207.

    Google Scholar 

  • Bugmann H. 1996. Functional types of trees in temperate and boreal forests: classification and testing. Journal of Vegetation Science 7: 359–370.

    Google Scholar 

  • Busing R.T. 1996. Estimation of tree replacement patterns in an Appalachian Picea-Abies forest. Journal of Vegetation Science 7: 685–694.

    Google Scholar 

  • Callaway R.M. 1995. Positive interactions among plants. The Botanical Review 61: 306–349.

    Google Scholar 

  • Callaway R.M. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112: 143–149.

    Google Scholar 

  • Callaway R.M. 1998a. Are positive interactions species-specific? Oikos 82: 202–207.

    Google Scholar 

  • Callaway R.M. 1998b. Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos 82: 561–573.

    Google Scholar 

  • Callaway R.M., De Lucia E.H., Moore D., Nowak R. and Schlesinger W.H. 1996. Competition and facilitation: contrasting effects of Artemisia tridentata on desert versus montane pines. Ecology 77: 2130–2141.

    Google Scholar 

  • Callaway R.M. and Walker L.R. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78: 1958–1965.

    Google Scholar 

  • Canham C.D. 1989. Different responses to gap among shade-tolerant tree species. Ecology 70: 548–550.

    Google Scholar 

  • Chapin F.S. and Shaver G.R. 1985. Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66: 564–576.

    Google Scholar 

  • Choler Ph., Michalet R. and Callaway R.M. 2001. Facilitation and competition on gradients in alpine plant communities. Ecology 82: 3295–3308.

    Google Scholar 

  • Cornelissen J.H.C. 1999. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118: 248–255.

    Google Scholar 

  • Curtis J.T. 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison.

    Google Scholar 

  • del Moral R. and Watson A.F. 1978. Gradient structure of forest vegetation in the Central Washington Cascades. Vegetatio 38: 29–48.

    Google Scholar 

  • Desplanque C. 1997. Dendroécologie comparée du sapin et de l'épicéa dans les Alpes internes franco-italiennes. Univ. J. Fourier, Grenoble 1, France.

    Google Scholar 

  • Desplanque C., Rolland C. and Michalet R. 1998. Dendroécologie comparée du sapin (Abies alba Mill.) et de l'épicéa (Picea abies Karst.) dans une vallée alpine française. Canadian Journal of Forest Research 28: 737–748.

    Google Scholar 

  • Douguedroit A. and de Saintignon M.-F. 1970. Méthode d'étude de la décroissance des températures en montagne de latitude moyenne: exemple des Alpes françaises du sud. Revue de Géographie Alpine 58: 453–472.

    Google Scholar 

  • Dzwonko Z. and Loster S. 1997. Effects of dominant trees and anthropogenic disturbances on species richness and floristic composition of secondary communities in Southern Poland. Journal of Applied Ecology 34: 861–870.

    Google Scholar 

  • Finzi A.C., van Breemen N. and Canham C.D. 1998. Canopy treesoil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological Applications 8: 440–446.

    Google Scholar 

  • Franco A.C. and Nobel P.S. 1989. Effect of nurse plants on the microhabitat and growth of cacti. Journal of Ecology 77: 870–886.

    Google Scholar 

  • Gafta D. and Pedrotti F. 1998. Fitoclima del Trentino-Alto Adige. Studi Trentini di Scienze Naturali 73: 55–111.

    Google Scholar 

  • Gams H. 1932. Die Klimatische Begrebzung von Pflanzenarealen und die Verteilung der hygrischen Kontinentalität in den Alpen. Zeitschrift der Gesellschaft für Erkunde 56.

  • Gillet F. and Gallandat J.-D. 1996. Integrated synusial phytosociology: some notes on a new, multiscalar approach to vegetation analysis. Journal of Vegetation Science 7: 13–18.

    Google Scholar 

  • Gillet F., Murisier B., Buttler A., Gallandat J.-D. and Gobat J.-M. 1999. Influence of tree cover on the diversity of herbaceous communities in subalpine wooded pastures. Applied Vegetation Science 2: 47–54.

    Google Scholar 

  • Gleason H. 1926. The individualistic concept of the plant association. Bulletin of Torrey Botanical Club 53: 7–26.

    Google Scholar 

  • Greenlee J.T. and Callaway R.M. 1996. Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana. The American Naturalist 148: 386–396.

    Google Scholar 

  • Hicks D.J. 1980. Intrastand distribution patterns of southern Appalachian cove forest herbaceous species. American Midland Naturalist 104: 209–223.

    Google Scholar 

  • Holmgren M., Scheffer M. and Huston M. 1997. The interplay of facilitation and competition in plant communities. Ecology 78: 1966–1975.

    Google Scholar 

  • Hutto R.L., McAuliffe J.R. and Hogan L. 1986. Distributional associates of the saguaro (Carnegia gigantea). Southwestern Naturalist 31: 469–476.

    Google Scholar 

  • Klinka K., Chen H.I.H., Wang Q. and de Montigny L. 1996. Forest canopies and their influence on understory vegetation in earlyseral stands on West Vancouver Island. Northwest Science 70: 193–200.

    Google Scholar 

  • Knapp A.K. and Smith W.K. 1981. Factors influencing understory seedling establishment of Engelmann spruce and subalpine fir in southeast Wyoming. Canadian Journal of Botany 60: 2753–2761.

    Google Scholar 

  • Kneeshaw D.D. and Burton P.J. 1997. Canopy and age structure of some old sub-boreal Picea stands in British Columbia. Journal of Vegetation Science 8: 615–626.

    Google Scholar 

  • Kuoch R. 1954. Wälder der Schweizer Alpen im verbreitungsgebiet der Weibtanne. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen 30: 133–314.

    Google Scholar 

  • Lebreton J.D., Chessel D., Prodon R. and Yoccoz N. 1988. The analysis of species environment relationships by canonical correspondence analysis. I. Quantitative environmental variables. Acta Oecologica Generalis 9: 53–67.

    Google Scholar 

  • Lippmaa T. 1939. The unistratal concept of plant communities (the unions). American Midland Naturalist 21: 111–145.

    Google Scholar 

  • McAuliffe J.R. 1988. Markovian dynamics of simple and complex desert plant communities. The American Naturalist 131: 459–490.

    Google Scholar 

  • McCune B. 1997. Influence of noisy environmental data on canonical correspondence analysis. Ecology 78: 2617–2623.

    Google Scholar 

  • McCune B. and Antos J.A. 1981. Correlations between forest layers in the Swan Valley, Montana. Ecology 62: 1196–1204.

    Google Scholar 

  • McIntosh R.P. 1967. The continuum concept of vegetation. The Botanical Review 33: 130–187.

    Google Scholar 

  • McIntosh R.P. and Hurtley R.T. 1964. The spruce-fir forests of the Catskill Mountains. Ecology 45: 314–326.

    Google Scholar 

  • Messier C., Parent S. and Bergeron Y. 1998. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science 9: 511–520.

    Google Scholar 

  • Michalet R. 1991. Nouvelle synthèse bioclimatique des milieux méditerranéens. Application au Maroc septentrional. Revue d'Ecologie Alpine 1: 45–60.

    Google Scholar 

  • Michalet R., Cadel G., Joud D., Pache G., Pautou G. and Richard L. 1998. Synthèse phytoécologique des forêts de l'Arc Alpin. Ecologie 29: 99–104.

    Google Scholar 

  • Michalet R., Gandoy C., Cadel G., Girard G., Grossi J.-L., Joud D. et al. 2001. Modes de fonctionnement d'humus des forêts sempervirentes des Alpes internes françaises. Comptes Rendus de l'Académie des Sciences Paris Sciences de la Vie 324: 59–70.

    Google Scholar 

  • Michalet R., Gandoy C., Joud D., Pagès J.-P. and Choler Ph. 2002. Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: comparative effects of soil chemistry and water status. Arctic Antarctic and Alpine Research 34: 102–113.

    Google Scholar 

  • Noble D.L. and Alexander R.R. 1977. Environmental factors affecting natural regeneration of Engelmann spruce in the Central Rocky Mountains. Forest Science 23: 420–429.

    Google Scholar 

  • Okitsu S., Ito K. and Li C. 1995. Establishment processes and regeneration patterns of montane virgin coniferous forest in northeastern China. Journal of Vegetation Science 6: 305–308.

    Google Scholar 

  • Okland R.H. 1996. Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? Journal of Vegetation Science 7: 289–292.

    Google Scholar 

  • Ozenda P. 1985. La végétation de la chaîne alpine dans l'espace montagnard européen. Masson, Paris.

    Google Scholar 

  • Pache G., Michalet R. and Aimé S. 1996a. A seasonal application of the Gams (1932) method, modified Michalet (1991): The example of the distribution of some important forest species in the Alpine chain. Dissertationes Botanicae 258: 31–54.

    Google Scholar 

  • Pache G., Aimé S. and Michalet R. 1996b. A simple model for the study of the altitudinal rainfall gradient, applied in the Tyrolian orographic complex. Revue d'Ecologie Alpine 3: 13–20.

    Google Scholar 

  • Peet R.K. 1981. Forest vegetation of the Colorado Front Range. Vegetatio 45: 3–75.

    Google Scholar 

  • Qian H., Klinka K. and Sivak B. 1997. Diversity of the understory vascular vegetation in 40 year-old and old growth forest stands on Vancouver Island, British Columbia. Journal of Vegetation Science 8: 773–780.

    Google Scholar 

  • Rheinhardt R.D. 1992. Disparate distribution patterns between canopy and subcanopy life-forms in two temperate North-American forests. Vegetatio 103: 67–77.

    Google Scholar 

  • Rolland C., Petitcolas V. and Michalet R. 1998. Changes in radial tree-growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the Alpine timberline since 1750. Trees Structure and Function 13: 40–53.

    Google Scholar 

  • Rolland C., Michalet R., Desplanque C., Petetin A. and Aimé S. 1999. Ecological requirements of Abies alba in the French Alps derived from dendro-ecological analysis. Journal of Vegetation Science 10: 297–306.

    Google Scholar 

  • Rolland C., Desplanque C., Michalet R. and Schweingrüber F.H. 2000. Extreme tree-rings in fir (Abies alba Mill.) and spruce (Picea abies (L.) Karst.) stands in relation to climate and space. Arctic Antarctic and Alpine Research 32: 1–13.

    Google Scholar 

  • Selter C.M., Pitts W.D. and Barbour M.G. 1986. Site microenvironment and seedling survival of Shasta red fir. American Midland Naturalist 115: 288–300.

    Google Scholar 

  • Shea K.L. 1985. Demographic aspects of coexistence in Engelmann spruce and subalpine fir. American Journal of Botany 72: 1823–1833.

    Google Scholar 

  • SPSS 1997. SPSS version 7.0 for Windows. SPSS, Chicago, Illinois, USA.

    Google Scholar 

  • Suzan H., Nablan G.P. and Patten D.T. 1996. The importance of Olneya tesota as a nurse plant in the Sonoran desert. Journal of Vegetation Science 7: 635–644.

    Google Scholar 

  • Sydes C. and Grime J.P. 1981. Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. II. An experimental investigation. Journal of Ecology 69: 249–262.

    Google Scholar 

  • Takahashi K. 1997. Regeneration and coexistence of two subalpine conifer species in relation to dwarf bamboo in the understorey. Journal of Vegetation Science 8: 529–536.

    Google Scholar 

  • ter Braak C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Thioulouse J., Devillers J., Chessel D. and Auda Y. 1991. Graphical techniques for multidimentional data analysis. In: Devillers J. and Karcher W. (eds), Applied Multivariate Analysis in SAR and Environmental Studies. Kluwer Acadamic Publishers, pp. 153–205.

  • Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M. et al. 1964–1980. Flora Europaea. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ustin S.L., Woodward R.A., Barbour M.G. and Hatfield J.L. 1984. Relationships between sunfleck dynamics and red fir seedling distribution. Ecology 65: 1420–1428.

    Google Scholar 

  • Veblen T.T. 1986. Treefalls and the coexistence of conifers in subalpine forests of the Central Rockies. Ecology 67: 644–649.

    Google Scholar 

  • Veblen T.T., Veblen A.T. and Schlegel F.M. 1979. Understory patterns in mixed evergreen-deciduous Nothofagus forests in Chile. Journal of Ecology 67: 809–823.

    Google Scholar 

  • Vetaas O.R. 1992. Micro-site effects of trees and shrubs in dry savannas. Journal of Vegetation Science 3: 337–344.

    Google Scholar 

  • Weltzin J.F. and McPherson G.R. 1999. Facilitation of conspecific seedling recruitment and shifts in temperate savanna ecotones. Ecological Monographs 69: 513–534.

    Google Scholar 

  • Westhoff V. and van der Maarel E. 1978. The Braun-Blanquet approach. In: Whittaker R.H. (ed.), Classification of plant communities. Junk, The Hague, pp. 297–399.

  • Whittaker R.H. 1951. A criticism of the plant association and climax concepts. Northwest Science 25: 17–31.

    Google Scholar 

  • Whittaker R.H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26: 1–80.

    Google Scholar 

  • Whittaker R.H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279–338.

    Google Scholar 

  • Whittaker R.H. 1967. Gradient analysis of vegetation. Biological Review 42: 207–264.

    Google Scholar 

  • Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

  • Whittaker R.H. and Niering W.A. 1968. Vegetation of the Santa Catalina mountains, Arizona. IV: Limestone and acid soils. Journal of Ecology 56: 523–544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalet, R., Rolland, C., Joud, D. et al. Associations between canopy and understory species increase along a rainshadow gradient in the Alps: habitat heterogeneity or facilitation?. Plant Ecology 165, 145–160 (2003). https://doi.org/10.1023/A:1022297624381

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022297624381

Navigation