Skip to main content
Log in

A continuity property for the inverse of mañé's projection

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F(X), and P 0an orthogonal projection in H of rank greater than or equal to 2 d F (X) + 1. For every δ > 0, there exists an orthogonal projection P in H of the same rank as P 0, which is injective when restricted to X and such that ‖PP 0‖ < δ This result follows from Mañé's paper. Thus the inverse (P|X)−1 of the restricted mapping P|X: XPX is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé's projection (P| X )−1. It is known that when H is finite dimensional then (P| X )−1 is Hölder continuous. In this paper we shall prove that if X is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) \(\parallel {\kern 1pt} x - y{\kern 1pt} \parallel \cdot \ln \ln \frac{1}{{{\gamma }\parallel Px - Py\parallel }}\;\; \leqslant \;\;1\) for every x, yX such that \(\parallel Px - Py\parallel \;\; \leqslant \;\;\tfrac{1}{{{\gamma e}^{e} }}\), where γ is a positive constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Artzi, A. Eden, C. Foiaş and B. Nicolaenko: Hölder continuity for the inverse of Mañé's projection. J. Math. Anal. Appl. 178 (1993), 22-29.

    Google Scholar 

  2. P. Constantin and C. Foiaş: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Comm. Pure Appl. Math. 38 (1985), 1-27.

    Google Scholar 

  3. P. Constantin, C. Foiaş, O.P. Manley and R. Temam: Determining modes and fractal dimension of turbulent flows. J. Fluid. Mech. 150 (1985), 427-440.

    Google Scholar 

  4. P. Constantin, C. Foiaş, B. Nicolaenko and R. Temam: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer-Verlag, New-York, 1989.

    Google Scholar 

  5. P. Constantin, C. Foiaş, B. Nicolaenko and R. Temam: Spectral barriers and inertial manifolds for dissipative partial differential equations. J. Dyn. Diff. Equ. 1 (1989), 45-73.

    Google Scholar 

  6. P. Constantin, C. Foiaş and R. Temam: Attractors representing turbulent flows. Mem. Amer. Math. Soc. 53 (1985), 1-67.

    Google Scholar 

  7. A. Debussche and R. Temam: Convergent families of approximate inertial manifolds. J. Math. Pures Appl. 73 (1994), 489-522.

    Google Scholar 

  8. A. Eden, C. Foiaş, B. Nicolaenko and Z.S. She: Exponential attractors and their relevance to fluid dynamics systems. Phys. D 63 (1993), 350-360.

    Google Scholar 

  9. A. Eden, C. Foiaş and R. Temam: Local and global Lyapunov exponents. J.Dyn.Diff.Equ. 3 (1991), 133-177.

    Google Scholar 

  10. E. Fabes, M. Luskin and G.R. Sell: Construction of intertial manifolds by elliptic regularization. J. Differential Equations 89 (1991), 355-387.

    Google Scholar 

  11. C. Foiaş, O.P. Manley and R. Temam: Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 8 (1991), 898-911.

    Google Scholar 

  12. C. Foiaş, O.P. Manley and R. Temam: Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1993), 567-583.

    Google Scholar 

  13. C. Foiaş, O. Manley and R. Temam: Modelling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Mod. Numer. Anal. 22 (1988), 93-118.

    Google Scholar 

  14. C. Foiaş, B. Nicolaenko, G. Sell and R. Temam: Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67 (1988), 197-226.

    Google Scholar 

  15. C. Foiaş, G.R. Sell and R. Temam: Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations 73 (1988), 309-353.

    Google Scholar 

  16. C. Foiaş, G.R. Sell and E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dyn. Diff. Equ. 1 (1989), 199-244.

    Google Scholar 

  17. C. Foiaş and R. Temam: Approximation of attractors by algebraci or analytic sets. SIAM J. Math. Anal. 25 (1994), 1269-1302.

    Google Scholar 

  18. J.M. Ghidaglia: On the fractal dimension of attractors for viscous incompressible fluid flows. SIAM J. Math. Anal. 17 (1986), 1139-1157.

    Google Scholar 

  19. D.A. Jones and E.S. Titi: A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations. SIAM J. Math. Anal. 25 (1994), 894-914.

    Google Scholar 

  20. M. Kwak: Finite-dimensional inertial forms for the 2D Navier-Stokes equations. Indiana Univ. Math. J. 41 (1992), 925-981.

    Google Scholar 

  21. J. Laminie, F. Pascal and R. Temam: Implementation and numerical analysis of the nonlinear Galerkin methods with finite elements discretization. Appl. Num. Math. 15 (1994), 219-246.

    Google Scholar 

  22. R. Mañé: On the dimension of the compact invariant sets of certain non-linear maps. Lecture Notes in Math. 898 (1981). Springer-Verlag, New York, pp. 230-242.

    Google Scholar 

  23. M. Marion and R. Temam: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26 (1989), 1139-1157.

    Google Scholar 

  24. L.A. Santaló: Integral Geometry and Geometric Probability. Addison-Wesley, Reading, 1976.

    Google Scholar 

  25. R. Temam: Induced trajectories and approximate inertial manifolds. Math. Mod. Numer. Anal. 23 (1989), 541-561.

    Google Scholar 

  26. R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68. Springer-Verlag, New-York, 1988.

    Google Scholar 

  27. R. Temam and S. Wang: Inertial forms of Navier-Stokes equations on the sphere. J. Funct. Anal. 117 (1993), 215-241.

    Google Scholar 

  28. E.S. Titi: On approximate inertial manifolds to the Navier-Stokes equations. J. Math. Anal. Appl. 149 (1990), 540-557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skalák, Z. A continuity property for the inverse of mañé's projection. Applications of Mathematics 43, 9–21 (1998). https://doi.org/10.1023/A:1022291923761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022291923761

Navigation