Skip to main content
Log in

Nuclear Spin Relaxation of Powdered Metallic Antimony in Liquid 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Nuclear spin relaxation studies have been carried out to determine the surface relaxation of powdered Sb immersed in liquid 3 He. The surface relaxation mechanism was observed to be significantly more effective than the bulk Korringa relaxation rate for temperatures T < 75 mK. This surface relaxation is attributed to the modulation of the dipole-dipole interaction between the Sb spins at the metal surface and the 3 He spins in the solid-like layer on the surface by the quantum zero-point motion of these 3 He atoms. The total relaxation has been analyzed in terms of the surface relaxation and the spin diffusion through the bulk of the Sb particles. The experimental results are in excellent agreement with the theory developed for this system. Replacement of the 3 He by 4 He removes the surface relaxation component and restores the relaxation rates to the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. S. Sullivan, J. Low Temp. Phys. 22, 313 (1976).

    Google Scholar 

  2. P. C. Hammel, M. L. Roukes, Y. Hu, T. J. Gramila, T. Mamiya, and R. C. Richardson, Phys. Rev. Lett. 51, 2124 (1983).

    Google Scholar 

  3. P. C. Hammel and R. C. Richardson, Phys. Rev. Lett. 52, 1441 (1984).

    Google Scholar 

  4. R. C. Richardson, Physica B 126, 298 (1984).

    Google Scholar 

  5. J. Friedman, T. J. Gramila, and R. C. Richardson, J. Low Temp. Phys. 55, 83 (1984).

    Google Scholar 

  6. P. C. Hammel, P. L. Kuhns, O. Gonen, and J. S. Waugh, Phys. Rev. B 34, 6543 (1986).

    Google Scholar 

  7. A. Schuhl, S. Maegawa, M. W. Meisel, and M. Chapellier, Phys. Rev. B 36, 6811 (1987).

    Google Scholar 

  8. O. Gonen, P. L. Kuhns, C. Zuo, and J. S. Waugh, J. Mag. Res. 81, 491 (1989).

    Google Scholar 

  9. F. W. Van Keuls, T. J. Gramila, L. J. Friedman, and R. C. Richardson, Physica B 165 & 166, 717 (1990).

    Google Scholar 

  10. S. Saito, T. Nakayama, and H. Ebisawa, Phys. Rev. B 31, 7475 (1985).

    Google Scholar 

  11. S. Saito, M. Okuyama, and T. Satoh, Phys. Rev. Lett. 55, 1757 (1985).

    Google Scholar 

  12. H. Pfeifer, in NMR: Basic Principles and Progress, Vol. 7, P. Diehl, E. Fluck, and R. Kosfield (eds.), Springer-Verlag, New York (1972).

    Google Scholar 

  13. W. P. Halperin, F. D'Orazio, S. Bhattacharja, and J. C. Tarczon, in Molecular Dynamics in Restricted Geometries, J. Klafter and J. M. Drake (eds.), Wiley, New York (1989).

    Google Scholar 

  14. H. C. Torrey, J. Korringa, D. O. Seevers, and J. Ubersfeld, Phys. Rev. Lett. 3, 418 (1959).

    Google Scholar 

  15. E. B. Genio, J. Xu, N. S. Sullivan, and G. G. Ihas, Czech. J. Phys. 46, 219 (1996).

    Google Scholar 

  16. E. B. Genio, G. G. Ihas, and N. S. Sullivan, J. Low Temp. Phys. (in press).

  17. Johnson Matthey Catalog Company Inc., Ward Hill, MA 01835.

  18. R. R. Hewitt and B. F. Williams, Phys. Rev. 129, 1188 (1963).

    Google Scholar 

  19. E. I. du Pont du Nemours & Co., Wilmington, DE 19808.

  20. Emerson & Cumming Inc., Canton, MA 02021.

  21. Millipore Filter Corp., Bedford, MA.

  22. G. E. Granroth, E. B. Genio, J. B. Walden, J. W. Xu, G. G. Ihas, and M. W. Meisel, Czech. J. Phys. 46, 91 (1996).

    Google Scholar 

  23. Apiezon Products, Ltd., 4 York Rd., London, UK.

  24. Model 1000, Oxford Instruments Ltd., Oxford, UK.

  25. G. J. Labbe, H. Royce, Y. Takano, and G. G. Ihas, in Proc. of Quantum Fluids and Solids, Sanibel Island, Florida, 1989, G. G. Ihas and Y. Takano (eds.), AIP, New York (1989).

    Google Scholar 

  26. J. Xu, O. Avenel, J. S. Xia, M-F Xu, T. Lang. P. L. Moyland, W. Ni, E. D. Adams, G. G. Ihas, M. W. Meisel, N. S. Sullivan, and Y. Takano, J. Low Temp. Phys. 89, 719 (1992).

    Google Scholar 

  27. T. Lang (1996), PhD. thesis, University of Florida (unpublished).

  28. G. S. Straty and E. D. Adams, Rev. Sci. Instrum. 40, 1393 (1969).

    Google Scholar 

  29. E. D. Adams, Rev. Sci. Instrum. 64, 601 (1993).

    Google Scholar 

  30. Paroscientific Inc., Redmond, WA 98052.

  31. D. E. MacLaughlin, J. D. Williamson, and J. Butterworth, Phys. Rev. B 4, 60 (1971).

    Google Scholar 

  32. R. R. Hewitt and D. E. MacLaughlin, J. Mag. Res 30, 483 (1978).

    Google Scholar 

  33. J. M. Keartland, G. C. K. Folscher, and M. J. R. Hoch, Phys. Rev. B 43, 8362 (1991).

    Google Scholar 

  34. K. R. Brownstein and C. E. Tarr, Phys. Rev. A 19, 2446 (1979).

    Google Scholar 

  35. R. P. Giffard, W. S. Truscott, and J. Hatton, J. Low Temp. Phys. 4, 153 (1971).

    Google Scholar 

  36. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford (1970), Chap. 3.

    Google Scholar 

  37. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford (1959), Chap. 11.

    Google Scholar 

  38. J. Korringa, D. O. Seevers, and H. C. Torrey, Phys. Rev. 127, 1143 (1962).

    Google Scholar 

  39. R. A. Guyer, in Physics at Ultralow Temperatures, Proceedings of the 1977 Hakone International Symposium, T. Sugawara, S. Nakajima, T. Ohtsuka, and T. Usui (eds.), Physical Society of Japan, Tokyo (1978).

    Google Scholar 

  40. A. I. Ahonen, T. Kodama, M. Krusius, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takano, J. Phys. C 9, 1665 (1976).

    Google Scholar 

  41. J. Wilks, The Properties of Liquid and Solid Helium, Oxford University Press, London (1967), Chap. 15.

    Google Scholar 

  42. M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod. Phys. 55, 1 (1983).

    Google Scholar 

  43. N. S. Sullivan, G. Deville, and A. Landesman, Phys. Rev. B11, 1858 (1975).

    Google Scholar 

  44. Y. Lin and N. S. Sullivan, J. Mag. Res. 86, 319 (1990).

    Google Scholar 

  45. A. Abragam, Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961), Chap. 8.

    Google Scholar 

  46. S. Maegawa, A. Schuhl, M. Meisel, and M. Chapellier, Europhys. Lett. 1, 83 (1986).

    Google Scholar 

  47. M. Roger, Phys. Rev. B 30, 6432 (1984).

    Google Scholar 

  48. M. Siqueira, J. Nyéki, B. Cowan, and J. Saunders, Czech. J. Phys. 46,S6, 3033 (1996).

    Google Scholar 

  49. B. Cowan, L. Abou El-Nasr, M. Fardio, and A. Hussain, Phys. Rev. Lett. 58, 2308 (1987).

    Google Scholar 

  50. R. Ling, E. R. Dobbs, and J. Saunders, Phys. Rev. B 33, 629 (1986).

    Google Scholar 

  51. D. O. Edwards, J. D. Feder, W. J. Gully, G. G. Ihas, J. Landau, and K. A. Muething, in Physics at Ultralow Temperatures, Proceedings of the 1977 Hakone International Symposium, T. Sugawara, S. Nakajima, T. Ohtsuka, and T. Usui (eds.), Physical Society of Japan, Tokyo (1978).

    Google Scholar 

  52. O. Avenel, P. M. Berglund, and E. Varoquaux (unpublished) cited in Ref. 51.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genio, E.B., Ihas, G.G. & Sullivan, N.S. Nuclear Spin Relaxation of Powdered Metallic Antimony in Liquid 3He. Journal of Low Temperature Physics 112, 21–45 (1998). https://doi.org/10.1023/A:1022289811309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022289811309

Keywords

Navigation