Skip to main content
Log in

Polarization of 3He, D2 and (eventually) 129Xe Using Low Temperatures and High Magnetic Fields

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The recent discovery that inhaling polarized 3 He or 129 Xe allows high resolution MRI images of the lungs to be made is having a large impact among the medical and physics communities. In fact, this technique could become the first high resolution, harmless diagnostic tool for several lung diseases. Neutron–lean nuclear fusion would also benefit from the use of polarized fuel (D, 3 He) through an enhanced fusion cross–section. At present, laser techniques are being used for polarizing 3 He and 129 Xe, but the yield is still quite low, at most a few tens of liters per day. Cryogenic techniques combining high magnetic fields and low temperatures could be used to produce much larger quantities of highly polarized 3 He through adiabatic compression. In a reasonable field of 15 T and 5 mK the polarization of the resulting solid is larger than 95%. Once polarized the solid is melted. The magnetization remains in the liquid for several minutes and the cell could be moved to a region at 6–7 K where the liquid would evaporate. The resulting gas could be removed and kept in a convenient vessel. Extraction could in principle be done in a time much shorter than the relaxation time T 1 of the liquid, which has a minimum around 300 s at 1 bar pressure. This process could produce large quantities of gas in the range of 100 to 1000 l/day. We have also demonstrated that by condensing molecular deuterium (catalized to mostly J= 0) inside the 3 He cell it was possible to polarize the D 2 molecules to 13%. Production of finely divided D 2 should lead to quite larger polarizations. Using this technique one might consider the polarization of 129 Xe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Middleton, R. Black, B. Saam, G. Cates, G. Cofer, R. Guenther, W. Happer, L. Hedlund, G. A. Johnson, K. Juvan, and J. Swartz, Magn. Reson. Med. 33, 271 (1995).

    Google Scholar 

  2. M. Ebert, T. Grossmann, W. Heil, W. E. Otten, R. Surkau, M. Leduc, P. Bachert, M. V. Knopp, L. R. Schad, and M. Thelen, Lancet 347, 1297 (1996).

    Google Scholar 

  3. Y. Torita, T. Takahashi, and H. Momota, Proc. of the Helion '97, Kobe, Japan (1997).

    Google Scholar 

  4. E. Stoltz, M. Meyerhoff, N. Bigelow, M. Leduc, P. J. Nacher, and G. Tastevin, Appl. Phys. B (to be published 1997).

  5. H.U. Kauczor, D. Hofmann, K. F. Kreitner, H. Nilgens, R. Surkau, W. Heil, A. Potthast, M. V. Knopp, E. W. Otten, and M. Thelen, Tech. Dev. Instr. 201, 564 (1996).

    Google Scholar 

  6. M. Albert, G. Cates, B. Saam, C. Springer, and A. Wishnia, Nature 370, 199 (1994).

    Google Scholar 

  7. M. Tanaka, M. Fujiwara, S. Nakayama, and L. W. Anderson, Phys. Rev. A 52, 392 (1995).

    Google Scholar 

  8. M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod. Phys. 55, 1 (1983).

    Google Scholar 

  9. H. L. Stipdonk, J. H. Hetherington, and G. Frossati, J. Low Temp. Phys. 61, 185 (1985).

    Google Scholar 

  10. O. V. Lounasmaa, Experimental Principles and Methods below 1 K, Academic Press, London (1974).

    Google Scholar 

  11. F. Pobell, Matter and Method at Low Temperatures, (Springer-Vg, Berlin 1992).

    Google Scholar 

  12. Helium Three, ed. by W. P. Halperin and L. P. Pitaevskii, North-Holland, Amsterdam (1990).

    Google Scholar 

  13. The Physics of Liquid and Solid Helium, Part II, ed. by K. H. Bennemann and J. B. Ketterson, John Wiley, New York (1978).

    Google Scholar 

  14. B. Castaing and P. Nozières, J. Phys. (Paris) 40, 257 (1970).

    Google Scholar 

  15. M. Chapellier, G. Frossati, and F. B. Rasmussen, Phys. Rev. Lett. 42, 902 (1979).

    Google Scholar 

  16. G. Schumacher, D. Thoulouze, B. Castaing, Y. Chabre, P. Segransan, and J. Joffrin, J. Phys. (Paris) Lett. 40, 143 (1979).

    Google Scholar 

  17. C. M. C. M. van Woerkens, Ph. D. Thesis (to be published). See also: D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 47, 190 (1981); S. A. J. Wiegers, C. C. Kranenburg, T. Hata, R. Jochemsen, and G. Frossati, Europhys. Lett. 10, 477 (1989); B. T. Beal and J. Hatton, Phys. Rev. 139, 1751 (1965); H. Godfrin, G. Frossati, B. Hebral, and D. Thoulouze, J. Phys. (Paris) 41 Colloq. C7–275 (1980).

  18. G. Frossati, J. Phys. (Paris) 41, Colloq. C7–95 (1987).

    Google Scholar 

  19. G. Frossati, Jpn. J. Appl. Phys. 26, 1833 (1987).

    Google Scholar 

  20. G. Frossati, H. Godfrin, B. Hebral, G. Schumacher, and D. Thoulouze, Proc. Hakone Int. Symp. (1977) p.294.

  21. A. Honig, Q. Fan, X. Wei, A.M. Sandorfi, and C. S. Whisnant, Nucl. Instr. Meth. A 356, 39 (1995).

    Google Scholar 

  22. E. ter Haar, G. Frossati, and W. G. Clark, J. Low Temp. Phys. 94, 361 (1994).

    Google Scholar 

  23. M. Gatzke, G. D. Cates, B. Driehuys, D. Fox, W. Happer, and B. Saam, Phys. Rev. Lett. 70 (1993).

  24. G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, Phys. Rev. Lett. 65, 2591 (1990).

    Google Scholar 

  25. H. E. Thompson, Proc. of 2 Wisconsin Symp. on Helium-3 and Fusion Power nd, (1993) p. 159.

  26. L. J. Wittemberg, J. F. Santarius, and G. L. Kulcinski, Fusion Techn. 10, 167 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frossati, G. Polarization of 3He, D2 and (eventually) 129Xe Using Low Temperatures and High Magnetic Fields. Journal of Low Temperature Physics 111, 521–532 (1998). https://doi.org/10.1023/A:1022285014248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022285014248

Keywords

Navigation