Skip to main content
Log in

Dipole Source Analysis in Persistent Mirror Movements

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

To elucidate the pathomechanism underlying persistent mirror movements (MM), we modelled the origin of electric brain activity associated with these movements. Movement-related cortical potentials (MRCP) in a group of subjects affected by persistent mirror movements were compared with those of a control group. The data of the normal subjects were best explained with two bilaterally active electric sources in the sensorimotor cortices with a clear preponderance of the hemisphere contralateral to the movement. In contrast, the MM subjects presented a fairly symmetric source activity in both hemispheres during unilateral intended movements. In the control group, the source representing the activity of the motor cortex ipsilateral to the moving finger reduced activity before the beginning of the movement; this was interpreted as an inhibition of the ipsilateral motor cortex during unilateral movement. In the MM group, however, this inhibition was not seen. Furthermore, while normal subjects demonstrated no relevant activity of an additional source placed near midline motor structures (supplementary motor area; SMA), subjects with MM showed considerable activity of this dipole source. These findings suggest that subjects with persistent MM have abnormal bilateral activation of the primary motor areas, probably together with an additional activation of mesial motor structures. This assumption fits well with the observation of an incomplete decussation of the pyramidal tract. The bilateral activation is then explained as a compensatory strategy in order to achieve sufficient force in the innervated target muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, P.A., Robinson, G.C and Buckler, W.S.J. Klippel-Feil syndrome: A study of mirror movements detected by electromyography. Am. J. Dis. Child., 1967, 113: 546-551.

    Google Scholar 

  • Barrett, G., Shibasaki, H. and Neshige, R. Cortical potential shifts preceding voluntary movement are normal in parkinsonism. Electroenceph. Clin. Neurophysiol., 1986, 63: 340-348.

    Google Scholar 

  • Boecker, H., Kleinschmidt, A., Requardt, M., Hänicke, W., Merbold, K.D. and Frahm, J. Functional cooperativity of human cortical motor areas during self-paced simple finger movements: a high-resolution MRI study. Brain, 1994, 117: 1231-1239.

    Google Scholar 

  • Boecker, K.B.E., Brunia, C.H.N. and Cluitmans, J.M.C. A spatio-temporal dipole model of the readiness potential in humans. I. Finger movement. Electroenceph. Clin. Neurophysiol., 1994, 91: 275-285.

    Google Scholar 

  • Bötzel, K., Plendl, H., Paulus, W. and Scherg, M. Bereitschaftspotential: is there a contribution of the supplementary motor area? Electroenceph. Clin. Neurophysiol., 1993, 89: 187-196.

    Google Scholar 

  • Bötzel, K., Ecker, C. and Schulze, S. Topography and dipole analysis of reafferent electric brain activity following the Bereitschaftspotential. Exp. Brain. Res., 1997, 114(2): 352-361.

    Google Scholar 

  • Brinkmann, C. and Porter, R. Supplementary motor area of the monkey: activity of neurones during performance of a learned motor task. J. Neurophysiol., 1979, 42: 681-709.

    Google Scholar 

  • Cheyne, D. and Weinberg, H. Neuromagnetic fields accompanying unilateral finger movements: pre-movement and movement-evoked fields. Exp. Brain Res., 1989, 78: 604-612.

    Google Scholar 

  • Cheyne, D., Weinberg, H., Gaetz, W. and Jantzen, K.J. Motor cortex activity and predicting side of movement: neuronal network and dipole of pre-movement magnetic fields. Neurosci. Lett., 1995, 188(2): 81-84.

    Google Scholar 

  • Cohen, L.G., Meer, J., Tarkka, I., Bierner, S., Leiderman, D.B., Dubinsky, R.M., Sanes, J.N., Jabbari, B., Branscum, B. and Hallett, M. Congenital mirror movements. Abnormal organization of motor pathways in two patients. Brain, 1991, 114: 381-403.

    Google Scholar 

  • Colebatch, J.G., Deiber, M.P., Passingham, R.E., Friston, K.J. and Frackowiak, R.S.J. Regional cerebral blood flow during arm and hand movements in human subjects. J. Neurophysiol., 1991, 65: 1392-1402.

    Google Scholar 

  • Connolly, K. and Stratton, P. Developmental changes in associated movements. Dev. Med. Child. Neurol., 1968, 10: 49-56.

    Google Scholar 

  • Conrad, B., Kriebel, J. and Hetzel, W.W. Hereditary bimanual synkinesis combined with hypogonadotropic hypogonadism and anosmia in four brothers. J. Neurol., 1978, 218: 263-274.

    Google Scholar 

  • Danek, A., Heye, B. and Schroedter, R. Cortically evoked motor responses in patients with Xp22.3-linked 1Kallmann's syndrome and in female gene carriers. Ann. Neurol., 1992a, 31: 299-304.

    Google Scholar 

  • Danek, A., Witt, T.N., Winter, T., Paulus, W. and Fries, W. Motor cortex stimulation in three families with autosomal-dominant mirror movements. Electroenceph. Clin. Neurophysiol., 1992b, 85: 95P-96P.

    Google Scholar 

  • Deecke, L., Scheid, P. and Kornhuber, H.H. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp. Brain Res., 1969, 7: 158-168.

    Google Scholar 

  • Deecke, L., Weinberg, H. and Brickett, P. Magnetic fields of the human brain accompanying voluntary movements: Bereitschaftsmagnetfeld. Exp. Brain Res., 1982, 48: 144-148.

    Google Scholar 

  • Deuschl, G., Toro, C., Matsumoto, J. and Hallett, M. Movement-related cortical potentials in writers cramp. Ann. Neurol., 1995, 38: 862-868.

    Google Scholar 

  • Devinsky, O., Morrell, M.J., and Vogt, B.A. Contributions of anterior cingulate cortex to behavior. Brain, 1995, 118: 279-306.

    Google Scholar 

  • Farmer, S.F., Ingram, D.A. and Stephens, J.A. Mirror movements studied in a patient with Klippel-Feil syndrome. J. Physiol., 1990, 428: 467-484.

    Google Scholar 

  • Goldring, S. and Ratcheson, R. Human motor cortex: Sensory input data from single neuron recordings. Science, 1972, 175: 1493-1495.

    Google Scholar 

  • Gunderson, C.H. and Solitaire, G.B. Mirror-movements in patients with the Klippel-Feil syndrome: neuropathologic observations. Arch. Neurol., 1968, 18: 675-679.

    Google Scholar 

  • Guttmann, E., Maclay, W.S. and Stokes, A.B. Persistent mirror-movements as a heredo-familial disorder. J. Neurol. Psychiatry, 1939, 2: 13-24.

    Google Scholar 

  • Hughes, P.J., Davies, P.T.G., Roche, S.W., Matthews, T.D. and Lane, R.J.M. Wildervanck or cervico-oculo-acoustic syndrome and MRI findings. J. Neurol. Neurosurg. Psychiatry, 1991, 54: 503-504.

    Google Scholar 

  • Ikeda, A., Lüders, H.O., Burgess, R.C. and Shibasaki, H. Movement-related potentials recorded from supplementary motor area and primary motor area. Brain, 1992, 115: 1017-1043.

    Google Scholar 

  • Iwamura, Y. and Tanaka, A. Bilateral hand representation in the postcentral somatosensory cortex. Nature, 1994, 369: 554-556.

    Google Scholar 

  • Kawashima, R., Yamada, K., Kinomura, S., Yamaguchi, T., Matsui, H., Yoshioka, S. and Fukuda, H. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res., 1993, 623: 33-40.

    Google Scholar 

  • Kawashima, R., Roland, P.E. and O'Sullivan, B.T. Activity in the human primary motor cortex related to ipsilateral hand movements. Brain Res., 1994, 663: 251-256.

    Google Scholar 

  • Kessler, K.R., Kleinschmidt, A., Schnitzler, A. and Frahm, J. Abnormal pattern of motor cortical activation in a patient with mirror movements demonstrated by functional magnetic resonance imaging. Movement Dis., 1994, 9Suppl 1: 119.

    Google Scholar 

  • Kim, S., Ashe, J., Georgopoulos, A.P., Merkle, H., Ellermann, J., Menon, R.S., Ogawa, S. and Ugurbil, K. Functional imaging of the human motor cortex at high magnetic fields. J. Neurophysiol., 1993a, 69: 297-302.

    Google Scholar 

  • Kim, S.G., Ashe, J., Hendrich, K., Ellermann, J.M., Merkle, H., Ugurbil, K. and Georgopoulos, A.P. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science, 1993b, 261: 615-616.

    Google Scholar 

  • Kornhuber, H.H. and Deecke, L. Hirnpotentialänderungen beim Menschen vor und nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung und Rückwärtsanalyse. Pflügers Arch., 1964, 281: 52.

    Google Scholar 

  • Krams, M., Quinton, R., Mayston, M.J., Harrison, L.M., Dolan, R.J., Bouloux, P.M., Stephens, J.A., Frackowiak, R.S. and Passingham, R.E. Mirror movements in X-linked Kallmann's syndrome. II. A PET study. Brain, 1997, 120: 1217-1228.

    Google Scholar 

  • Kristeva, R., Cheyne, D. and Deecke, L. Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: topography and analysis of cortical sources. Electroenceph. Clin. Neurophysiol., 1991, 81: 284-298.

    Google Scholar 

  • Lang, W., Cheyne, D., Kristeva, R., Beisteiner, R., Lindinger, G., Deecke, L. Three-dimensional localization of SMA activity preceding voluntary movement. Exp. Brain Res., 1991, 87: 688-694.

    Google Scholar 

  • Lazarus, J.A., Todor, J.I. Age differences in the magnitude of associated movement. Dev. Med. Child. Neurol., 1987, 29(6): 726-733.

    Google Scholar 

  • Leinsinger, G., Danek, A., Jassoy, A., Heiss, D., Küffler, G.V. Functional MR imaging of the cortical hand motor area in patients with mirror movements. Radiology, 1994, 193P: 265.

    Google Scholar 

  • Lim, S.H., Dinner, D.S., Pillay, P.K., Lüders, H., Morris, H.H., Klem, G., Wyllie, E. and Awad, I.A. Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroenceph. Clin. Neurophysiol., 1994, 91: 179-193.

    Google Scholar 

  • Luppino, G., Matelli, M., Camarda, R.M., Gallese, V. and Rizzolatti, G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulations study in the macaque monkey. J. Comp. Neurol., 1991, 311: 463-482.

    Google Scholar 

  • Matelli, M., Luppino, G. and Rizzolatti, G. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol., 1991, 311: 445-462.

    Google Scholar 

  • Matsunami, K. and Hamada, I. Characteristics of the ipsilateral movement-related neuron in the motor cortex of the monkey. Brain Res., 1981, 204: 29-42.

    Google Scholar 

  • Mayer, M., Bötzel, K., Paulus, W., Plendl, H., Pröckl, D. and Danek, A. Movement-related cortical potentials in persistent mirror movements. Electroenceph. Clin. Neurophysiol., 1995, 95: 350-358.

    Google Scholar 

  • Mayston, M.J., Harrison, L.M., Quinton, R., Stephens, J.A., Krams, M. and Bouloux, P.M. Mirror movements in X-linked Kallmann's syndrome. I. A neurophysiological study. Brain, 1997, 120: 1199-1216.

    Google Scholar 

  • Meyer, B.-U. Spiegelbewegungen. In: B.U. Meyer (Ed.), Magnetstimulation des Nervensystems: Grundlagen und Ergebnisse der klinischen und experimentellen Anwendung. Springer, Berlin Heidelberg New York, 1992: 209-217.

    Google Scholar 

  • Meyer, B.U., Röricht, S., Gräfin-von-Einsiedel, H., Kruggel, F. and Weindl, A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain, 1995, 118: 429-440.

    Google Scholar 

  • Miltner, W., Braun, C., Johnson, R., Simpson, G.V. and Ruchkin, D.S. A test of brain electric source analysis (BESA): a simulation study. Electroenceph. Clin. Neurophysiol., 1994, 91: 295-310.

    Google Scholar 

  • Nagamine, T., Toro, C., Balish, M., Deuschl, G., Wang, B., Sato, S., Shibasaki, H. and Hallett, M. Cortical magnetic and electric fields associated with voluntary finger movements. Brain Topogr., 1994, 6: 175-183.

    Google Scholar 

  • Neshige, R., Lüders, H. and Shibasaki, H. Recording of movement related potentials from scalp and cortex in man. Brain, 1988, 111: 719-736.

    Google Scholar 

  • Rasmussen, P. Persistent mirror movements: A clinical study of 17 children, adolescents and young adults. Dev. Med. Child. Neurol., 1993, 35: 699-707.

    Google Scholar 

  • Rector, I., Feve, P., Buser, P., Bathien, N. and Lamarche, M. Intracerebral recording of movement related readiness potentials: an exploration in epileptic patients. Electroenceph. Clin. Neurophysiol., 1994, 90: 273-283.

    Google Scholar 

  • Regli, F., Filippa, G. and Wiesendanger, M. Hereditary mirror movements. Arch. Neurol., 1967, 16: 620-623.

    Google Scholar 

  • Robinson, D. Vestibular and optokinetic symbiosis: an example of explaining by modelling. In: R. Baker and A. Berthoz A (Eds.), Control of gaze by brain stem neurons. Elsevier/North-Holland Biomedical Press, New York, 1977.

    Google Scholar 

  • Rouiller, E.M., Babalian, A., Kazennikov, O., Moret, V., Yu, X.H. and Wiesendanger, M. Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp. Brain Res., 1994, 102: 227-243.

    Google Scholar 

  • Samelin, R., Forss, N., Knuutila, J. and Hari, R. Bilateral activation of the human somatomotor cortex by distal hand movements. Electroenceph. Clin. Neurophysiol., 1995, 95: 444-452.

    Google Scholar 

  • Scherg, M. Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke and G.L. Romani (Eds.), Auditory evoked magnetic fields and electric potentials. Adv. Audiol., Vol. 6, Karger, Basel, 1990: 40-69.

    Google Scholar 

  • Scherg, M. and Berg, P. Use of prior knowledge in brain electric source analysis. Brain Topogr., 1991, 4: 143-150.

    Google Scholar 

  • Scherg, M. and von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroenceph. Clin. Neurophysiol., 1985, 62: 32-44.

    Google Scholar 

  • Scherg, M. and Picton, T.W. Separation and identification of event-related potential components by brain electric source analysis. In: C.H.N. Brunia, G. Mulder and M.N. Verbaten, (Eds.), Event related brain research (EEG Suppl. 42). Elsevier, Amsterdam, 1991: 24-37.

    Google Scholar 

  • Schott, G.D. and Wyke, M.A. Congenital mirror movements. J. Neurol. Neurosurg. Psychiatry 1981, 44: 586-599.

    Google Scholar 

  • Shibasaki, H., Barrett, G., Halliday, E. and Halliday, A.M. Components of the movement-related cortical potential and their scalp topography. Electroenceph. Clin. Neurophysiol., 1980, 49: 213-226.

    Google Scholar 

  • Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, J., Honda, M., Nagamine, T., Shuwazono, S., Magata, J., Ikeda, A., Miyazaki, H., Fukuyama, M., Asato, H., Konishi, R. and Both, J. Primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 1993, 116: 1387-1398.

    Google Scholar 

  • Shima, K., Aya, K., Mushiake, H., Inase, M., Aizawa, H. and Tanji, J. Two movement related foci in the primate cingulate cortex observed in signal-triggered and self-paced movements. J. Neurophysiol., 1991, 65: 188-202.

    Google Scholar 

  • Srebro, R., Oguz, R., Hughlett, K. and Purdy, P. Functional brain imaging: dipole localization and laplacian methods. Vision Res., 1993, 33: 2413-2419.

    Google Scholar 

  • Tanji, I., Okano, K. and Sato, K.C. Neuronal activity in cortical motor areas related to ipsilateral, contralateral and bilateral digit movements of the monkey. J. Neurophysiol., 1988, 60: 325-343.

    Google Scholar 

  • Tarkka, I.M. and Hallett, A.M. Cortical topography of premotor and motor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroenceph. Clin. Neurophysiol., 1990, 75: 36-43.

    Google Scholar 

  • Tarkka, I.M. and Hallett, A.M. Topography of the scalp recorded motor potentials in human finger movements. J. Clin. Neurophysiol., 1991, 39: 414.

    Google Scholar 

  • Tarkka, I.M. Electrical source localization of human movement-related cortical potentials. Int. J. Psychophysiol., 1994, 16: 81-88.

    Google Scholar 

  • Toro, C., Matsumoto, J., Deuschl, G., Roth, B.J. and Hallett, M. Source analysis of scalp-recorded movement-related electrical potentials. Electroenceph. Clin. Neurophysiol. 1993, 86: 167-175.

    Google Scholar 

  • Walter, H. Kristeva, R., Knorr, U., Schlaug, G., Huang, Y., Steinmetz, H., Nebeling, B., Herzog, H. and Setz, R.J. Individual somatotopy of primary sensorimotor cortex revealed by intermodal matching of MEG, PET and MRI. Brain Topogr., 1992, 5: 183-187.

    Google Scholar 

  • Wood, C.C. Application of dipole localization methods to source identification of human evoked potentials. Ann. N.Y. Acad. Sci., 1982, 388: 139-55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, M., Schulze, S., Danek, A. et al. Dipole Source Analysis in Persistent Mirror Movements. Brain Topogr 12, 49–60 (1999). https://doi.org/10.1023/A:1022281607426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022281607426

Navigation