Skip to main content
Log in

Dynamic Measurements of Thermal Transport Coefficients and Boundary Resistance. II.Model for 3He-Superfluid 4He Mixtures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This is the second of a three-part study of the ac response of liquid helium. We derive the temperature response function, ΔT(ω), of a 3 He-superfluid 4 He mixture from the equations of superfluid hydrodynamics in the presence of two interfacial boundary resistances,Rb.Specifically, we consider the response ΔT(ω), across a fluid layer of thickness,d, to an ac heat flux,Q(t) = Qo exp(iωt).ΔT(ω) depends on the effective thermal conductivity, κ eff , Griffin's diffusion coefficient, Γ o (i.e. the thermal diffusivity of 3 He impurities, Diso in the low 3 He concentration limit) and the thermal boundary resistance, 2Rb. This analysis provides the basis for experiments to determine these parameters. Although past experiments to measure these properties have been carried out using dc and transient techniques, an ac technique offers significant noise reduction over these techniques. By sweeping the frequency, it is possible for an experimenter to clearly identify different components of the system response to the heat flux. For instance, if τt is the slowest fluid thermal response time, conventional Kapitza boundary effects dominate at frequencies, ωτ≫1. These calculations reveal an interesting analogy to the “Piston Effect” for near-critical classical fluids. In Part I of this work, we used normal liquid 4 He as a testing ground for developing models of ac heat transport. In Part III of this work, we will present results in which we apply this technique to measurements on dilute mixtures of 3 He in superfluid 4 He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Tanaka and A. Ikushima, J. Low Temp. Phys. 35, 9 (1979).

    Google Scholar 

  2. M. Dingus, F. Zhong, J. Tuttle, and H. Meyer, J. Low Temp. Phys. 65, 331 (1986).

    Google Scholar 

  3. F. Zhong, J. Tuttle, and H. Meyer, J. Low Temp. Phys. 79, 9 (1990).

    Google Scholar 

  4. J. Tuttle, F. Zhong, and H. Meyer, J. Low Temp. Phys. 82, 15 (1991).

    Google Scholar 

  5. D. Murphy and H. Meyer, J. Low Temp. Phys. 89, 375 (1992).

    Google Scholar 

  6. D. Murphy and H. Meyer, J. Low Temp. Phys. 99, 745 (1995).

    Google Scholar 

  7. D. Murphy and H. Meyer, J. Low Temp. Phys. 105, 185 (1996).

    Google Scholar 

  8. D. Murphy and H. Meyer, J. Low Temp. Phys. 107, 175 (1997).

    Google Scholar 

  9. F. London, Superfluids, Vol. 2, Dover Publications, New York (1950).

    Google Scholar 

  10. I. M. Khalatnikov and V. Zharkov, Zh. Eksp. Teor. Fiz. 32, 1108 (1957); Sov. Phys. JETP 5, 905 (1957); I. M. Khalatnikov, Introduction to the Theory of Superfluidity, Benjamin, New York (1965).

    Google Scholar 

  11. R. P. Behringer, J. Low Temp. Phys. 81, 1 (1990).

    Google Scholar 

  12. J. S. Olafsen and R. P. Behringer, J. Low Temp. Phys. 106, 673 (1997).

    Google Scholar 

  13. A. Griffin, Can. J. Phys. 47, 429 (1969).

    Google Scholar 

  14. D. S. Greywall and G. Ahlers, Phys. Rev. A 7, 2145 (1973).

    Google Scholar 

  15. J. Wilks and D. S. Betts, An Introduction to Liquid Helium, Claredon Press, Oxford (1987).

    Google Scholar 

  16. A. Onuki, Prog. Theo. Phys. 70, 875 (1983).

    Google Scholar 

  17. R. Ferrell, Physica B 165, 557 (1990).

    Google Scholar 

  18. R. Duncan and G. Ahlers, Phys. Rev. B 43, 7707 (1991).

    Google Scholar 

  19. R.P. Behringer J. Low Temp. Phys. 62, 15 (1986).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olafsen, J.S., Behringer, R.P. Dynamic Measurements of Thermal Transport Coefficients and Boundary Resistance. II.Model for 3He-Superfluid 4He Mixtures. Journal of Low Temperature Physics 111, 863–877 (1998). https://doi.org/10.1023/A:1022277208488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022277208488

Keywords

Navigation