Skip to main content
Log in

Comparison of TAF46 and Zhong 5 resistances to barley yellow dwarf virus from Thinopyrum intermedium in wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Barley yellow dwarf virus (BYDV) is one of the most important plant viruses in the world. Two sources of resistance to BYDV derived from Thinopyrum intermedium were compared in wheat backgrounds. A source of resistance was confirmed in the partial amphiploid TAF46, the group 7 addition line L1, and translocation TC14. The other source of resistance derives from the partial amphiploid Zhong 5 and is present in the group 2 addition line Z6. Six ditelosomic addition lines have been derived from Z6. The resistance of genotypes derived from Zhong 5 is more effective at reducing virus multiplication throughout plant growth than that of genotypes derived from TAF46. The translocation line TC14, derived from TAF46 showed 30% plants escaping virus infection whereas all plants derived from Zhong 5 were infected. This suggests that the two sources of resistance are associated with differing mechanisms of resistance. Methods to better understand the genetic control and the mechanisms of these two resistances are suggested. The pyramiding of different sources of resistance to construct durable resistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.M., D.L. Bucholtz, A.E. Greene, M.G. Francki, S.M. Gray, H. Sharma, H.W. Ohm & K.L. Perry, 1998. Characterization of wheatgrass-derived barley yellow dwarf virus resistance in a wheat alien chromosome substitution line. Phytopathology 88: 851-855.

    PubMed  CAS  Google Scholar 

  • Ayala, L., M. van Ginkel, M. Khairallah, B. Keller & M. Henry, 2001. Expression of Thinopyrum intermedium-derived Barley yellow dwarf virus resistance in elite bread wheat backgrounds. Phytopathology 91: 55-62.

    PubMed  CAS  Google Scholar 

  • Baltenberger, D.E., H.W. Ohm & J.E. Foster, 1987. Reactions of oats, barley, and wheat to infection with barley yellow dwarf virus isolates. Crop Sci 27: 195-198.

    Article  Google Scholar 

  • Banks, P.M., P.M. Waterhouse & P.J. Larkin, 1992. Pathogenicity of three RPV isolates of Barley Yellow Dwarf Virus on barley, wheat and wheat alien addition lines. Ann Appl Biol 121: 305-314.

    Google Scholar 

  • Banks, P.M., S.J. Xu, R.R.C. Wang & P.J. Larkin, 1993. Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome 36: 207-215.

    PubMed  CAS  Google Scholar 

  • Banks, P.M., P.J. Larkin, H.S. Bariana, E.S. Lagudah, R. Appels, P.M. Waterhouse, R.I.S. Brettell, X. Chen, H.J. Xu, Z.Y. Xin, Y.T. Qian, X.M. Zhou, Z.M. Cheng & G.H. Zhou, 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38: 395-405.

    PubMed  CAS  Google Scholar 

  • Brettell, R.I.S., P.M. Banks, Y. Cauderon, X. Chen, Z.M. Cheng, P.J. Larkin & P.M. Waterhouse, 1988. A single wheat grass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol 113: 599-603.

    Google Scholar 

  • Burnett, P.A. & C.C. Gill, 1976. The response of cereals to increased dosage with barley yellow dwarf virus. Phytopathology 66: 646-651.

    Article  Google Scholar 

  • Crasta, O.R., M.G. Francki, D.B. Bucholtz, H.C. Sharma, J. Zhang, R.C. Wang, H.W. Ohm & J.M. Anderson, 2000. Identification and characterization of wheat-wheatgrass translocation lines and localization of barley dwarf virus resistance. Genome 43: 698-706.

    Article  PubMed  CAS  Google Scholar 

  • Cauderon, Y., 1966. Etude cytogénétique de l'évolution du matériel issu de croisements entre Triticum aestivum et Agropyron intermedium. I: Création de types d'addition stables. Ann Amelior Plant 16: 43-70.

    Google Scholar 

  • Cauderon, Y., B. Saigne & M. Dauge, 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: E.R. Sears & L.M.S. Sears (Eds.), Proc 4th Int Wheat Genet Symp, pp. 401-407. University of Missouri.

  • Carrigan, L.L., H.W. Ohm, J.E. Foster & F.L. Patterson, 1981. Response of winter wheat cultivars to barley yellow dwarf virus infection. Crop Sci 21: 377-380.

    Article  Google Scholar 

  • Chen, Q., J. Collin, A. Comeau, C.A. St-Pierre & G. Fedak, 1997. Comparison of various sources of resistance to barley yellow dwarf virus in wheat-Thinopyrum amphiploid lines. Can J Plant Pathol 19: 414-417.

    Article  Google Scholar 

  • Chen, Q., R.L. Conner, A. Laroche & J.B. Thomas, 1998a. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41: 580-586.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., R.L. Conner, F. Ahmad, A. Laroche, G. Fedak & J.B. Thomas, 1998b. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum × Thinopyrum ponticum and T. aestivum × Th. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet 97: 1-8.

    Article  CAS  Google Scholar 

  • Chen, Q., R.L. Conner, A. Laroche, W.Q. JI, K.C. Armstrong & G. Fedak, 1999. Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat-Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome 42: 1217-1223.

    Article  PubMed  CAS  Google Scholar 

  • Chi, S.Y., S.S. Yi, Y.H. Chang, K.H. Yi & F.Y. Son, 1979. Studies on wheat breeding by distant hybridisation between wheat and Agropyron glaucum. Sci Agric Sin 2: 1-11.

    Google Scholar 

  • Clark, M.F. & A.N. Adams, 1977. Characteristics of the microplate method of Enzyme-Linked Immunosorbent Assay for the detection of plant viruses. J Gen Virol 34: 475-483.

    Article  PubMed  CAS  Google Scholar 

  • Comeau, A. & A. Plourde, 1987. Cell tissue culture and intergeneric hybridization for barley yellow dwarf resistance in wheat. Can J Plant Pathol 9: 188-192.

    Article  Google Scholar 

  • Comeau, A., F. Makkouk, F. Ahamad & C.A. St Pierre, 1994. Bread wheat × Agrotricum crosses as a source of immunity and resistance to the PAV strain of barley yellow dwarf virus. Agronomie 2: 153-160.

    Google Scholar 

  • Crasta, O.R., M.G. Francki, D.B. Bucholtz, H.C. Sharma, J. Zhang, R.C. Wang, H.W. Ohm & J.M. Anderson, 2000. Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf virus resistance. Genome 43: 698-706.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of DNA from fresh tissue. Focus 12: 13-15.

    Google Scholar 

  • Etienne, C., J. Jahier, D. Barloy & M. Trottet, 1998. Study and identification of markers of two genes for resistance to BYDV derived from Thinopyrum intermedium. Barley Yellow Dwarf Newsl 7: 5-6.

    Google Scholar 

  • Fedak, G., Q. Chen, R.L. Conner, A. Laroche, A. Comeau & CA St.-Pierre, 2001. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica 120: 373-378.

    Article  Google Scholar 

  • Francki, M.G., O.R. Crasta, H.C. Sharma, H.W. Ohm & J.M. Anderson, 1997. Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome 40: 716-722.

    CAS  PubMed  Google Scholar 

  • Hohmann, U., K. Badaeva, W. Busch, B. Friebe & B.S. Gill, 1996. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39: 336-347.

    CAS  PubMed  Google Scholar 

  • Larkin, P.J., R.I.S. Brettell, P.M. Banks, R. Appels, P.M. Waterhouse, Z.M. Cheng, G.H. Zhou, Z.Y. Xin & X. Chen, 1990. Identification, characterization and utilisation of sources of resistance to barley yellow dwarf virus. In: P.A. Burnett (Ed.), World Perspectives on Barley Yellow Dwarf, pp. 415-420. International Maize and Wheat Improvement Center (CIMMYT), Mexico.

    Google Scholar 

  • Larkin, P.J., P.M. Banks, E.S. Lagudah, R. Appels, X. Chen, Z.Y. Xin, H.W. Ohm & R.A. McIntosh, 1995a. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38: 385-394.

    CAS  PubMed  Google Scholar 

  • Larkin, P.J., P.M. Banks & X. Chen, 1995b. Registration of six genetic stocks of wheat with rust and BYDV resistance: Z1, Z2, Z3, Z4, Z5 and Z6 disomic addition lines with Thinopyrum intermedium chromosomes. Crop Sci 35: 603.

    Article  Google Scholar 

  • Miller, W.A., P.M. Waterhouse & W.L. Gerlach, 1988. Sequence and organization of barley yellow dwarf virus genomic RNA. Nucl Acids Res 16: 6097-6111.

    PubMed  CAS  Google Scholar 

  • Pike, K.S., 1990. Review of barley yellow dwarf virus crop losses. In: P.A. Burnett (Ed.), World Perspectives on Barley Yellow Dwarf, pp. 368-382. International Maize and Wheat Improvement Center (CIMMYT), Mexico.

    Google Scholar 

  • Sharma, H.C., H.W. Ohm, R.M. Lister, J.E. Foster & R.H. Shukle, 1989. Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor Appl Genet 77: 369-374.

    Article  Google Scholar 

  • Sharma, H., H. Ohm, L. Goulard, R. Lister, R. Appels & O. Benlhabib, 1995. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38: 406-413.

    CAS  PubMed  Google Scholar 

  • Singh, R.P., 1993. Bdv1: a gene for tolerance to barley yellow dwarf virus in bread wheat. Crop Sci 33: 231-234.

    Article  Google Scholar 

  • Sun, S., 1981. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin 7: 57-58.

    Google Scholar 

  • Tang S., Z. Li, X. Jia & P.J. Larkin, 2000. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100: 344-352.

    Article  CAS  Google Scholar 

  • Wang, R.C.C. & X.Y. Zhang, 1996. Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. Chromosome Res 4: 583-587.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z.Y., R.I.S. Brettell, Z.M. Chen, P.M. Waterhouse, R. Appels, P.M. Banks, G.H. Zhou, X. Chen & Larkin P.J. 1988. Characterization of potential source of barley yellow dwarf virus resistance for wheat. Genome 30: 250-257

    Article  Google Scholar 

  • Xu, S.J., P.M. Banks, Y.S. Dong, R.H. Zhou & Larkin, P.J. 1994. Evaluation of Chinese Triticeae for resistance to barley yellow dwarf virus (BYDV). Genet Res Crop Evol 41: 35-41.

    Article  Google Scholar 

  • Zhang, X.Y., A. Koul, R. Petroski, T. Ouellet, G. Fedak, Y.S. Dong & R.C. Wang, 1996. Molecular verification and characterization of BYDV-resistant germplasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. Theor Appl Genet 93: 1033-1039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barloy, D., Etienne, C., Lemoine, J. et al. Comparison of TAF46 and Zhong 5 resistances to barley yellow dwarf virus from Thinopyrum intermedium in wheat. Euphytica 129, 361–369 (2003). https://doi.org/10.1023/A:1022260010187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022260010187

Navigation