Skip to main content
Log in

Biochemistry of Esterases Associated with Organophosphate Resistance in Lucilia cuprina with Comparisons to Putative Orthologues in Other Diptera

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Esterase activities associated with organophosphate insecticide resistance in the Australian sheep blowfly, Lucilia cuprina, are compared with similar activities in other Diptera. The enzymes making the major contribution to methyl butyrate hydrolysis (“ali-esterase”) in L. cuprina, M. domestica, and D. melanogaster comigrate during electrophoresis. The enzymes in L. cuprina and D. melanogaster correspond to the naphthyl acetate hydrolyzing E3 and EST23 isozymes of those species. These and previously published data suggest that the ali-esterases of all three species are orthologous. Strains of L. cuprina fall into four groups on the basis of quantitative determinations of their ali-estesterase, OP hydrolase, and malathion carboxylesterase activities and these groups correspond to their status with respect to two types of OP resistance. Strains susceptible to OPs have high ali-esterase, low OP hydrolase, and intermediate MCE activities; those resistant to malathion but not diazinon have low ali-esterase, intermediate OP hydrolase, and high MCE activities; those resistant to diazinon but not malathion have low ali-esterase, high OP hydrolase, and low MCE activities; those resistant to both OPs have low ali-esterase, high OP hydrolase, and high MCE activities. The correlated changes among the three biochemical and two resistance phenotypes suggest that they are all properties of one gene/enzyme system; three major allelic variants of that system explain OP susceptibility and the two types of OP resistance. Models are proposed to explain the joint contribution of OP hydrolase and MCE activities to malathion resistance and the invariant association of low ali-esterase and elevated OP hydrolase activities in either type of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aldridge, W. N., and Reiner, E. (1972). Enzyme Inhibitors as Substrates Interactions of Esterases with Esters of Organophosphorus and Carbamic Acids, North-Holland.

  • Bell, J. D., and Busvine, J. R. (1967). Synergism of organophosphates in Musca domestica and Chrysomyia putoria. Entomol. Exp. Appl. 10:263.

    Google Scholar 

  • Bigley, W. S., and Plapp, F. W., Jr. (1961). Esterase activity and susceptibility to parathion at different stages in the life cycle of organophosphorus-resistant and susceptible house flies. J. Econ. Entomol. 54:904.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye binding. Anal. Biochem. 72:248.

    Google Scholar 

  • Busvine, J. R., Bell, J. D., and Guneidy, A. M. (1963). Toxicology and genetics of two types of insecticide resistance in Chrysomya putoria. Bull. Entomol. Res. 54:589.

    Google Scholar 

  • Dauterman, W. C. (1985). Insect metabolism: Extramicrosomal. In Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 12, Pergamon Press, Oxford, pp. 713–730.

    Google Scholar 

  • Devonshire, A. L. (1991). Role of esterases in resistance of insects to insecticides. Biochem. Soc. Trans. 19:755.

    Google Scholar 

  • Devonshire, A. L., and Moores, G. D. (1989). Detoxication of insecticides by esterases from Myzus persicae—Is hydrolysis important? In Reiner, E., Aldridge, W. N., and Hoskin, F. C. G. (eds.), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, pp. 180–192.

    Google Scholar 

  • Ellman, G. L., Courtney, D., Andres, V., and Featherstone, R. M. (1961). A new and rapid colourimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88.

    Google Scholar 

  • Eto, M. (1974). Organophosphorus Pesticides: Organic and Biological Chemistry, CRC Press, Cleveland.

    Google Scholar 

  • Feyereisen, R., and Vincent, D. R. (1984). Characterization of antibodies to house fly NADPH-cytochrome P-450 reductase. Insect Biochem. 14:163.

    Google Scholar 

  • Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G. (1981). Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae) and possible correlations with the linkage maps of Musca domestica L. and Drosophila melanogaster (Mg.). Genet. Res. Cambr. 37:55.

    Google Scholar 

  • Gordon, M. A., Carpenter, D. E., Barrett, H. W., and Wilson, I. B. (1978). Determination of the normality of cholinesterase solutions. Anal. Biochem. 85:519.

    Google Scholar 

  • Gleeson, D. M., Barry, S. C., and Heath, A. C. G. (1994). Insecticide resistance status of Lucilia cuprina in New Zealand using biochemical and toxicological techniques. Vet. Parasitol. 53:301.

    Google Scholar 

  • Hansens, E. J. (1958). House fly resistance to diazinon. J. Econ. Entomol. 51:497.

    Google Scholar 

  • Healy, M. J., Dumancic, M. M., and Oakeshott, J. G. (1991). Biochemical and physiological studies of suluble esterases from Drosophila melanogaster. Biochem. Genet. 29:365.

    Google Scholar 

  • Hebert, P. D. N., and Beaton, M. J. (1989). Methodologies for Allozyme Analysis Using Cellulose Acetate Electrophoresis: A Practical Handbook, Helena Laboratories, Beaumont, TX.

    Google Scholar 

  • Hughes, P. B. (1982). Organophosphorus resistance in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae): A genetic study incorporating synergists. Bull. Entomol. Res. 72:573.

    Google Scholar 

  • Hughes, P. B., and Devonshire, A. L. (1982). The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 18:289.

    Google Scholar 

  • Hughes, P. B., and Raftos, D. A. (1985). Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Bull. Entomol. Res. 75:535.

    Google Scholar 

  • Hughes, P. B., Green, P. E., and Reichmann, K. G. (1984). Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77:1400.

    Google Scholar 

  • Järv, J. (1984). Stereochemical aspects of cholinesterase catalysis. Bioorg. Chem. 12:259.

    Google Scholar 

  • Järv, J. (1989). Insight into the putative mechanism of esterase acting simultaneously on carboxyl and phosphoryl compounds. In Reiner, E., Aldridge, W. N., and Hoskin, F. C. G. (eds.), Enzymes Hydrolysing Organophosphorus Compounds, Ellis Horwood, Chichester, pp. 221–225.

    Google Scholar 

  • Kao, L. R., Motoyama, N., and Dauterman, W. C. (1985). The purification and characterisation of esterases from insecticide-resistant and susceptible house flies. Pestic. Biochem. Physiol. 23:228.

    Google Scholar 

  • Leatherbarrow, R. J. (1987). Enzfitter Version 1.05, Elsevier-Biosoft.

  • Lewis, J. B., and Sawicki, R. M. (1971). Characterisation of the resistance mechanisms to diazinon, parathion and diazoxon in the organophosphorus-resistant SKA strain of house flies (Musca domestica L.). Pestic. Biochem. Physiol. 1:275.

    Google Scholar 

  • Lin, P. T., Main, A. R., Tucker, W. P., Motoyama, N., and Dauterman, W. C. (1984). Studies on organophophorus inpurities in technical malathion: Inhibition of carboxylesterases and the stability of isomalathion. Pestic. Biochem. Physiol. 21:223.

    Google Scholar 

  • Matsumura, F., and Hogendijk, C. J. (1964). The enzymatic degradation of malathion in organophosphate resistant and susceptible strains of Musca domestica. Entomol. Exp. Appl. 7:179.

    Google Scholar 

  • McKenzie, J. A. (1993). Measuring fitness and intergenic interactions: The evolution of resistance to diazinon in Lucilia cuprina. Genetica 90:227.

    Google Scholar 

  • McKenzie, J. A., Parker, A. P., and Yen, J. L. (1992). Polygenic and single gene responses to selection for resistance to Diazinon in Lucilia cuprina. Genetics 130:613.

    Google Scholar 

  • Newcomb, R. D., Campbell, P. M., Russell, R. J. and Oakeshott, J. G. (1997). cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus insecticide resistance in Lucilia cuprina. Insect Biochem. Molec. Biol. 27:15.

    Google Scholar 

  • Newcomb, R. D., East, P. D., Russell, R. J., and Oakeshott, J. G. (1996). Isolation of a cluster esterase genes associated with organophosphate resistance in Lucilia cuprina. Insect Mol. Biol. 5:211.

    Google Scholar 

  • Nguy, V. D., and Busvine, J. R. (1960). Studies of the genetics of resistance to parathion and malathion in the housefly. World Health Org. 22:531.

    Google Scholar 

  • Ogita, Z.-I., and Kasai, T. (1965). Genetico-biochemical analysis of specific esterases in Musca domestica. Japan. J. Genet. 40:173.

    Google Scholar 

  • Oppenoorth, F. J. (1959). Genetics of resistance to organophosphorus compounds and low ali-esterase activity in the housefly. Entomol. Exp. Appl. 2:304.

    Google Scholar 

  • Oppenoorth, F. J. (1985). Biochemistry and genetics of insecticide resistance. In Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 12, Pergamon Press, Oxford, pp. 731–773.

    Google Scholar 

  • Oppenoorth, F. J., and van Asperen, K. (1960). Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132:298.

    Google Scholar 

  • Oppenoorth, F. J., and van Asperen, K. (1961). The detoxication enzymes causing organophosphate resistance in the housefly; Properties, inhibition, and the action of inhibitors as synergists. Entomol. Exp. Appl. 4:311.

    Google Scholar 

  • Oppenoorth, F. J., and Welling, W. (1976). Biochemistry and physiology of resistance. In Wikinson, C. F. (ed.), Insecticide Biochemistry and Pharmacology, Plenum Press, New York, London, pp. 507–551.

    Google Scholar 

  • Parker, A. G., Russell, R. J., Delves, A. C., and Oakeshott, J. G. (1991). Biochemistry and physiology of esterases in organophosphate-susceptible and resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 41:305.

    Google Scholar 

  • Parker, A. G., Campbell, P. M., Spackman, M. E., Russell, R. J., and Oakeshott, J. G. (1996). Comparison of an esterase associated with organophosphate resistance in Lucilia cuprina with an orthologue not associated with resistance in Drosophila melanogaster. Pestic. Biochem. Physiol. 55:85.

    Google Scholar 

  • Plapp, F. W., Jr., Orchard, R. D., and Morgan, J. W. (1965). Analogs of parathion and malathion as substitute insecticides for the control of resistance house flies and the mosquito Culex tarsalis. J. Econ. Entomol. 58:953.

    Google Scholar 

  • Raftos, D. A. (1986). The biochemical basis of malathion resistance in the sheep blowfly. Pestic. Biochem. Physiol. 26:302.

    Google Scholar 

  • Raftos, D. A., and Hughes, P. B. (1986). Genetic basis of a specific resistance to malathion in the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77:553.

    Google Scholar 

  • Ryan, D. L., and Fukuto, T. R. (1984). The effect of isomalathion and O,S,S-trimethyl phosphorodithioate on the in vivo metabolism of malathion in rats. Pestic. Biochem. Physiol. 21:349.

    Google Scholar 

  • Sawicki, R. M., and Keiding, J. (1981). Factors affecting the sequential acquisition by Danish houseflies (Musca domestica L.) of resistance to organophosphorus insecticides. Pestic. Sci. 12:587.

    Google Scholar 

  • Shono, T. (1983). Linkage group analysis of carboxylesterase in a malathion resistant strain of the housefly, Musca domestica L. (Diptera: Muscidae). Appl. Entomol. Zool. 18:407.

    Google Scholar 

  • Smyth, K.-A. (1994). Biochemical Genetics of Organophosphate Resistance in the Australian Sheep Blowfly, Lucilia cuprina. Ph.D. thesis, Australian National University.

  • Smyth, K.-A., Russell, R. J., and Oakeshott, J. G. (1994). A cluster of at least three esterase genes in Lucilia cuprina includes malathion carboxylesterase and two other esterases implicated in resistance to organophosphates. Biochem. Genet. 32:437.

    Google Scholar 

  • Smyth, K.-A., Walker, V. K., Russell, R. J., and Oakeshott, J. G. (1996). Biochemical and physiological differences in the malathion carboxylesterase activities of malathion-susceptible and-resistant lines of the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 54:48.

    Google Scholar 

  • Spackman, M. E., Oakeshott, J. G., Smyth, K.-A., Medveczky, K. M., and Russell, R. J. (1994). A cluster of esterase genes on chromosome 3R of Drosophila melanogaster includes homologues of esterase genes conferring insecticide resistance in several Diptera. Biochem. Genet. 32:39.

    Google Scholar 

  • Townsend, M. G., and Busvine, J. R. (1969). The mechanism of malathion resistance in the blowfly Chrysomya putoria. Entomol. Exp. Appl. 12:243.

    Google Scholar 

  • van Asperen, K., and Oppenoorth, F. J. (1960). The interaction between organophosphorus insecticides and esterases in homogenates of organophosphate susceptible and resistant houseflies. Entomol. Exp. Appl. 3:68.

    Google Scholar 

  • van Asperen, K., van Mazijk, M., and Oppenoorth, F. J. (1965). Relationship between electrophoretic esterase patterns and organophosphate resistance in Musca domestica. Entomol. Exp. Appl. 8:163.

    Google Scholar 

  • Weller, G. L., and Foster, G. G. (1993). Genetic maps of the sheep blowfly Lucilia cuprina: Linkage-group correlations with other dipteran genera. Genome 36:495.

    Google Scholar 

  • Welling, W., and Blaakmeer, P. T. (1971). Metabolism of malathion in a resistant and susceptible strain of houseflies. In Tahori, A. S. (ed.), International IUPAC Congress of Pesticide Chemistry, Gordon and Breach, New York, Vol. 2, pp. 61–75.

    Google Scholar 

  • Welling, W., Blaakmeer, P., Vink, G. J., and Voerman, S. (1971). In vitro hydrolysis of paraoxon by parathion resistant houseflies. Pestic. Biochem. Physiol. 1:61.

    Google Scholar 

  • Wilson, J. A., and Clark, A. G. (1996). The role of E3 esterase, glutathione S-transferase and other nonoxidative mechanisms of resistance to diazinon and other organophosphate insecticides in Lucilia cuprina. Pestic. Biochem. Physiol. 54:85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, P.M., Trott, J.F., Claudianos, C. et al. Biochemistry of Esterases Associated with Organophosphate Resistance in Lucilia cuprina with Comparisons to Putative Orthologues in Other Diptera. Biochem Genet 35, 17–40 (1997). https://doi.org/10.1023/A:1022256412623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022256412623

Navigation