Abstract
This paper presents a detailed design, a theoretical analysis, and experimental tests of a high-resolution thermometer for use in the temperature range from 1.6 to 5 K. The device uses a dc-SQUID magnetometer to determine the change in magnetization with temperature of a paramagnetic salt in a magnetic field. The field is provided by a small permanent magnet attached to the thermometer. Measurements of the sensitivity of the device agree well with the theoretical analysis. Near 2.17 K (the superfluid transition of 4 He at saturated vapor pressure) the thermometer has a specific sensitivity of 4000φ 0 /K Gauss. There it achieves a temperature resolution better than 10 −9 K when it is charged with a field of about 300 Gauss. At 4.2 K, the specific sensitivity is smaller by a factor of 50, but should still allow temperature measurements with a resolution better than 10 −7 K. Near 2.17 K, drifts of the device are below the level of 10 −13 K/s. The thermometer has a small mass of about 7 g (excluding the magnet), and thus the advantage of relatively small cosmic radiation heating during microgravity experiments in Earth orbit.
Similar content being viewed by others
REFERENCES
See, for instance, J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelson, Phys. Rev. Lett. 76, 944 (1996); F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996); and G. Ahlers and R. V. Duncan, in Frontiers of Physics, Proceedings of the Landau Memorial Conference, E. Gotsman, Y. Ne'eman, and A. Voronel (eds.), Pergamon, Oxford (1990).
J. A. Lipa, B. C. Leslie, and T. C. Walstrom, Physica 107B, 331 (1981).
V. Steinberg and G. Ahlers, J. Low Temp. Phys. 53, 255 (1983).
T. C. P. Chui and J. A. Lipa, in Proceedings of the Seventeenth International Conference on Low Temperature Physics, Karlsruhe, 1984, North-Holland, Amsterdam (1984), p. 931.
M. J. Adriaans, T. C. P. Chui, M. Ndesandjo, D. R. Swanson, and J. A. Lipa, Physica 169B, 455 (1991).
R. V. Duncan and G. Ahlers, Phys. Rev. B 43, 7707 (1991).
L. S. Goldner, N. Mulders, and G. Ahlers, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992), pp. 113–116.
T. C. P. Chui, D. R. Swanson, M. J. Adrians, J. A. Nissen, and J. A. Lipa, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992).
G. K.-S. Wong, Ph.D. Thesis, Cornell University (1990) (unpublished).
D. R. Swanson, J. A. Nissen, T. C. P. Chui, P. R. Williams, and J. A. Lipa, Physica B 194–196, 25 (1994).
H. Baddar, H. Fu, M. Larson, N. Mulders, and G. Ahlers, Czech. J. Phys. 46-Suppl, 2859 (1996).
L. S. Goldner and G. Ahlers, Phys. Rev. B 45, 13129 (1992).
L. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. Phys. 93, 125 (1993).
F.-C. Liu and G. Ahlers, Physica B 194–196, 597 (1994).
F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996).
See, for instance, M. Larson, F.-C. Liu, and U. E. Israelsson, Czech. J. Phys. 46-Suppl, 179 (1996).
T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, Phys. Rev. Lett. 69, 3005 (1992).
J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76, 944 (1996).
A. R. Miedema, R. F. Wielinga, and W. J. Huiskamp, Physica 31, 1585 (1965).
H. Suzuki and T. Watanabe, Phys. Lett. 26A, 81 (1967).
L. J. deJongh, A. R. Miedema, and R. F. Wielinga, Physica 46, 44 (1970).
L. J. deJongh and A. R. Miedema, Experiments on Simple Magnetic Model Systems, Barnes and Noble, New York (1974).
We had hoped to prevent the reaction between CAB and copper by gold plating. We have found since that CAB reacts also with gold, thus rendering this step ineffective. However, the gold plating did not seem to have a detrimental effect on the thermometer sensitivity.
In some other thermometer designs which have been described, the salt was not sealed and the apparatus in which the thermometers were used had to be cooled close to nitrogen temperature before it could be evacuated without decomposing the salt, thus making leak testing at ambient temperature impossible.
We used Hitachi Magnetics Corporation Hicorex 96B permanent magnets with a cross section of 0.85 × 0.85 cm2.
K. W. Rigby, Rev. Sci. Instrum. 59, 156 (1988).
J. W. Thomasson and D. M. Ginsberg, Rev. Sci. Instrum. 47, 387 (1976).
J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).
W. R. Smythe, Static and Dynamic Electricity, Hemisphere Publishing Corporation, New York (1989), pp. 340.
K. A. Muething, D. O. Edwards, J. D. Feder, W. J. Gully, and H. N. Scholz, Rev. Sci. Instrum. 53, 485 (1982).
Experimental Techniques in Condensed Matter Physics at Low Temperatures, R. C. Richardson and E. N. Smith (eds.), Addison-Wesley Frontiers in Physics (1988).
For the Conductus dc-SQUID Tcf = 5φ0/μA. For the Quantum Design ac-SQUID T cf = 10φ0/μA.
See, for instance, American Institute of Physics Handbook, second edition, McGraw-Hill, New York (1963), pp. 5–233.
M. Larson, Ph. D. Thesis, University of California at Santa Barbara (1993) (unpublished).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fu, H., Baddar, H., Kuehn, K. et al. A High-Resolution Thermometer for the Range 1.6 to 5 K. Journal of Low Temperature Physics 111, 49–71 (1998). https://doi.org/10.1023/A:1022246124415
Issue Date:
DOI: https://doi.org/10.1023/A:1022246124415