Skip to main content
Log in

A High-Resolution Thermometer for the Range 1.6 to 5 K

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper presents a detailed design, a theoretical analysis, and experimental tests of a high-resolution thermometer for use in the temperature range from 1.6 to 5 K. The device uses a dc-SQUID magnetometer to determine the change in magnetization with temperature of a paramagnetic salt in a magnetic field. The field is provided by a small permanent magnet attached to the thermometer. Measurements of the sensitivity of the device agree well with the theoretical analysis. Near 2.17 K (the superfluid transition of 4 He at saturated vapor pressure) the thermometer has a specific sensitivity of 4000φ 0 /K Gauss. There it achieves a temperature resolution better than 10 −9 K when it is charged with a field of about 300 Gauss. At 4.2 K, the specific sensitivity is smaller by a factor of 50, but should still allow temperature measurements with a resolution better than 10 −7 K. Near 2.17 K, drifts of the device are below the level of 10 −13 K/s. The thermometer has a small mass of about 7 g (excluding the magnet), and thus the advantage of relatively small cosmic radiation heating during microgravity experiments in Earth orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, for instance, J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelson, Phys. Rev. Lett. 76, 944 (1996); F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996); and G. Ahlers and R. V. Duncan, in Frontiers of Physics, Proceedings of the Landau Memorial Conference, E. Gotsman, Y. Ne'eman, and A. Voronel (eds.), Pergamon, Oxford (1990).

  2. J. A. Lipa, B. C. Leslie, and T. C. Walstrom, Physica 107B, 331 (1981).

    Google Scholar 

  3. V. Steinberg and G. Ahlers, J. Low Temp. Phys. 53, 255 (1983).

    Google Scholar 

  4. T. C. P. Chui and J. A. Lipa, in Proceedings of the Seventeenth International Conference on Low Temperature Physics, Karlsruhe, 1984, North-Holland, Amsterdam (1984), p. 931.

    Google Scholar 

  5. M. J. Adriaans, T. C. P. Chui, M. Ndesandjo, D. R. Swanson, and J. A. Lipa, Physica 169B, 455 (1991).

    Google Scholar 

  6. R. V. Duncan and G. Ahlers, Phys. Rev. B 43, 7707 (1991).

    Google Scholar 

  7. L. S. Goldner, N. Mulders, and G. Ahlers, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992), pp. 113–116.

    Google Scholar 

  8. T. C. P. Chui, D. R. Swanson, M. J. Adrians, J. A. Nissen, and J. A. Lipa, in Temperature: Its Measurement and Control in Science and Industry, Vol. 6, J. F. Schooly (ed.), American Institute of Physics, New York (1992).

    Google Scholar 

  9. G. K.-S. Wong, Ph.D. Thesis, Cornell University (1990) (unpublished).

  10. D. R. Swanson, J. A. Nissen, T. C. P. Chui, P. R. Williams, and J. A. Lipa, Physica B 194–196, 25 (1994).

    Google Scholar 

  11. H. Baddar, H. Fu, M. Larson, N. Mulders, and G. Ahlers, Czech. J. Phys. 46-Suppl, 2859 (1996).

  12. L. S. Goldner and G. Ahlers, Phys. Rev. B 45, 13129 (1992).

    Google Scholar 

  13. L. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. Phys. 93, 125 (1993).

    Google Scholar 

  14. F.-C. Liu and G. Ahlers, Physica B 194–196, 597 (1994).

    Google Scholar 

  15. F.-C. Liu and G. Ahlers, Phys. Rev. Lett. 76, 1300 (1996).

    Google Scholar 

  16. See, for instance, M. Larson, F.-C. Liu, and U. E. Israelsson, Czech. J. Phys. 46-Suppl, 179 (1996).

  17. T. C. P. Chui, D. R. Swanson, M. J. Adriaans, J. A. Nissen, and J. A. Lipa, Phys. Rev. Lett. 69, 3005 (1992).

    Google Scholar 

  18. J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76, 944 (1996).

    Google Scholar 

  19. A. R. Miedema, R. F. Wielinga, and W. J. Huiskamp, Physica 31, 1585 (1965).

    Google Scholar 

  20. H. Suzuki and T. Watanabe, Phys. Lett. 26A, 81 (1967).

    Google Scholar 

  21. L. J. deJongh, A. R. Miedema, and R. F. Wielinga, Physica 46, 44 (1970).

    Google Scholar 

  22. L. J. deJongh and A. R. Miedema, Experiments on Simple Magnetic Model Systems, Barnes and Noble, New York (1974).

    Google Scholar 

  23. We had hoped to prevent the reaction between CAB and copper by gold plating. We have found since that CAB reacts also with gold, thus rendering this step ineffective. However, the gold plating did not seem to have a detrimental effect on the thermometer sensitivity.

  24. In some other thermometer designs which have been described, the salt was not sealed and the apparatus in which the thermometers were used had to be cooled close to nitrogen temperature before it could be evacuated without decomposing the salt, thus making leak testing at ambient temperature impossible.

  25. We used Hitachi Magnetics Corporation Hicorex 96B permanent magnets with a cross section of 0.85 × 0.85 cm2.

  26. K. W. Rigby, Rev. Sci. Instrum. 59, 156 (1988).

    Google Scholar 

  27. J. W. Thomasson and D. M. Ginsberg, Rev. Sci. Instrum. 47, 387 (1976).

    Google Scholar 

  28. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).

    Google Scholar 

  29. W. R. Smythe, Static and Dynamic Electricity, Hemisphere Publishing Corporation, New York (1989), pp. 340.

    Google Scholar 

  30. K. A. Muething, D. O. Edwards, J. D. Feder, W. J. Gully, and H. N. Scholz, Rev. Sci. Instrum. 53, 485 (1982).

    Google Scholar 

  31. Experimental Techniques in Condensed Matter Physics at Low Temperatures, R. C. Richardson and E. N. Smith (eds.), Addison-Wesley Frontiers in Physics (1988).

  32. For the Conductus dc-SQUID Tcf = 5φ0A. For the Quantum Design ac-SQUID T cf = 10φ0A.

  33. See, for instance, American Institute of Physics Handbook, second edition, McGraw-Hill, New York (1963), pp. 5–233.

  34. M. Larson, Ph. D. Thesis, University of California at Santa Barbara (1993) (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Baddar, H., Kuehn, K. et al. A High-Resolution Thermometer for the Range 1.6 to 5 K. Journal of Low Temperature Physics 111, 49–71 (1998). https://doi.org/10.1023/A:1022246124415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022246124415

Keywords

Navigation