Skip to main content
Log in

Estimate from Below of the First Eigenvalue for the Beltrami–Laplace Operator in the Three-Dimensional Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work the following theorem is proved by elementary methods. Theorem. For all congruence-subgroups of the group PSL2 \(\left( (\mathbb{O}) \right)\) the following inequality holds: λ1 ≥ −\(\frac{2}{5}\), where \(\left( (\mathbb{O}) \right)\) is the ring of all Gaussian integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lax P. D. and Phillips R. S., “The asymptotic distribution of lattice points in euclidian and non-euclidian spaces,” J. Funct. Anal., 46, No. 3, 280–350 (1982).

    Google Scholar 

  2. Levitan B. M., “Asymptotic formulas for the number of lattice points in Euclidean and Lobachevsky spaces,” Uspekhi Mat. Nauk, 42, No. 3 (255), 13–38 (1987).

    Google Scholar 

  3. Levitan B. M., “On the asymptotic behavior of the spectral function and discrete spectrum of the Laplace operator on a fundamental domain of Lobachevsky 's plane,” Rendiconti del seminario Mate atico e Fisico di Milano, 52, 195–219 (1982).

    Google Scholar 

  4. Levitan B. M. and Parnovsky L. B., “On the asymptotics of the discrete spectrum of Dirichlet and Neumann problems for the Laplace–Beltrami operator on a regular polyhedron in Lobachevsky space,” Funk. anal. i ego prilozh., 24, No. 1, 21–28 (1990).

    Google Scholar 

  5. Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc., 20, 47–87 (1956).

    Google Scholar 

  6. Selberg A., “On the estimation of Fourier coefficients of modular forms,” Proc. Symp. Pure Math., 8, 1–15 (1965).

    Google Scholar 

  7. Elstrodt J., Grunewald F., and Mennicke J., “Continuous groups in the three-dimensional Hyperbolic space: analytic theory and arithmetic applications,” Uspekhi Mat. Nauk, 229, No. 38 (1), 119–147 (1983).

    Google Scholar 

  8. Elstrodt J., Grunewald F., and Mennicke J., “The Selberg zeta-functions for compact discrete subgroups of PSL(2, ℂ ),” Elementary and analytical theory of numbers(Banach Center Publ.17 PWN, Warsaw), 217, 306 (1985).

    Google Scholar 

  9. Elstrodt J., Grunewald F., and Mennicke J., “Arithmetic applications of the hyperbolic lattice point theorem,” Proc. London Math. Soc.(3), 57, 239–283 (1988).

    Google Scholar 

  10. Elstrodt J., Grunewald F., and Mennicke J., “Klosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of Laplacian for congruence subgroups acting on hyperbolic spaces,” Invent. Math., 101, 641–685 (1990).

    Google Scholar 

  11. Patterson S. J., “A lattice point problem in hyperbolic space,” Mathematika, 22, 81–88 (1975). Corrigendum: ibid, 23, 227 (1976).

    Google Scholar 

  12. Huxley M. N., “Introduction to Kloostermania,” Elementary and analytical theory of numbers(Banach Center Publ. 17PWN, Warsaw), 217, 306 (1985).

    Google Scholar 

  13. Mozochi C. I., “An upper bound for ?1for ?(q ) and ?0(q ),” Proc. Edinburgh Math. Soc., 33, 241–250 (1990).

    Google Scholar 

  14. Sougui M., Entire points in domains in the Lobachevsky plane. Candidate dissertation. Moscow (1991).

  15. Arkhipov G. I. and Chubarikov V. N., “On the number of lattice points in a ball in a three-dimensional Lobachevsky space,” Vestn. Mosk. Un-ta, Ser. 1, Mathematics. Mechanics, No. 2, 24–27 (1994).

    Google Scholar 

  16. Huber H., “¨Ñber eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene,” Comment. Math. Helv., 30, 20–62 (1956).

    Google Scholar 

  17. Fricker F., “Ein Gitterpunktproblem im dreidimensionalen hyperbolischen Raum,” Comment. Math. Helv., 43, 402–416 (1968).

    Google Scholar 

  18. Günther P., “Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom Rang 1,” Math. Nachr., 94, 5–27 (1980).

    Google Scholar 

  19. Roelcke W., “Ñber die Wellengleichung bei Grenzkreisgruppen erster Art.Abhandlung (1956),” Sitzungsber. Heidelberger Akad. Wiss. Math.-Naturwiss., 4, 1–109 (1953/54).

    Google Scholar 

  20. Deshouillers J.-M. and Iwaniec H., “Kloosterman sums and Fourier coefficients of cusp forms,” Invent. Math., 70, 219–288 (1982).

    Google Scholar 

  21. Szmidt J., “The Selberg trace formula and Picard group,” Acta Arith., 42, 391–424 (1983).

    Google Scholar 

  22. Elstrodt J., Grunewald F., and Mennicke J., “Some remarks on discrete subgroups of SL2 (ℂ),” Zapiski nauchn. semin. Leningr. otd. MIAN, No. 162, 77–106 (1987).

    Google Scholar 

  23. Sarnak P., “The arithmetic and geometry of some hyperbolic three manifolds,” Acta Math., 151, 253–295 (1983).

    Google Scholar 

  24. Arkhipov G. I., Sadovnichii V. A., and Chubarikov V. N., Lectures on Mathematical Analysis[in Russian ], Vyssh. Shkola, Moscow, 2-nd edition (2000).

    Google Scholar 

  25. Vinogradov I. M., Elements of higher mathematics[in Russian ], Vyssh.Shkola, Moscow (1999).

    Google Scholar 

  26. Huxley M. N., Area, Lattice Points, and Exponential Sums, Oxford, London Math. Soc. Monographs (new ser., no.13) (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipov, G.I., Chubarikov, V.N. Estimate from Below of the First Eigenvalue for the Beltrami–Laplace Operator in the Three-Dimensional Space. Journal of Mathematical Sciences 114, 1397–1406 (2003). https://doi.org/10.1023/A:1022244610494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022244610494

Keywords

Navigation