Skip to main content
Log in

Switched-angle spinning applied to bicelles containing phospholipid-associated peptides

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In a model study, the proton NMR spectrum of the opioid pentapeptide leucine-enkephalin associated with bicelles is investigated. The spectral resolution for a static sample is limited due to the large number of anisotropic interactions, in particular strong proton–proton couplings, but resolution is greatly improved by magic-angle sample spinning. Here we present two-dimensional switched-angle spinning NMR experiments, which correlate the high-resolution spectrum of the membrane-bound peptide under magic-angle spinning with its anisotropic spectrum, leading to well-resolved spectra. The two-dimensional spectrum allows the exploitation of the high resolution of the isotropic spectrum, while retaining the structural information imparted by the anisotropic interactions in the static spectrum. Furthermore, switched-angle spinning techniques are demonstrated that allow one to record the proton spectrum of ordered bicellar phases as a function of the angle between the rotor axis and the magnetic field direction, thereby scaling the dipolar interactions by a predefined factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auger, M., Marcotte, I. Ouellet, M. Gagné S. and Dufourc, E.J. (2002) In Proceedings of the 44th Rocky Mountains Conference on Analytical Chemistry, Denver, CO, July 28-August 1, 2002, p. 88.

  • Bax, A. and Tjandra, N. (1997) J. Biomol. NMR, 10, 289-292.

    Google Scholar 

  • Chou, J.J., Gaemers, S., Howder, B., Louis, J.M. and Bax, A. (2001) J. Biomol. NMR, 21, 377-382.

    Google Scholar 

  • Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. and Bax, A. (2002) J. Am. Chem. Soc., 124, 2450-2451.

    Google Scholar 

  • De Alba, E. and Tjandra, N. (2002) Prog. Nucl. Magn. Reson. Spectrosc., 40, 175-197.

    Google Scholar 

  • Deber, C.M. and Behnam, B.A. (1984) Proc. Natl. Acad. USA, 81, 61-65.

    Google Scholar 

  • Forbes, J., Husted, C. and Oldfield, E. (1988) J. Am. Chem. Soc., 110, 1059-1065.

    Google Scholar 

  • Freedberg, D.I. (2002) J. Am. Chem. Soc., 124, 2358-2362.

    Google Scholar 

  • Glaubitz, C. and Watts, A. (1998) J. Magn. Reson., 130, 305-316.

    Google Scholar 

  • Glover, K.J., Whiles, J.A., Wood, M.J., Melacini, G., Komives, E.A. and Vold, R.R. (2001a) Biochemistry, 40, 13137-13142.

    Google Scholar 

  • Glover, K.J., Whiles, J.A., Wu, G., Yu, N., Deems, R., Struppe, J.O., Stark, R., Komives, E.A. and Vold, R.R. (2001b) Biophys. J., 81, 2163-2171.

    Google Scholar 

  • Hansen, M.R., Rance, M. and Pardi, A. (1998) J. Am. Chem. Soc., 120, 11210-11211.

    Google Scholar 

  • Hesse, M., Meier, H. and Zeeh, B. (1995) Spektroskopische Methoden in der organischen Chemie, 4th edn., Georg Thieme Verlag, Stuttgart, p. 104.

    Google Scholar 

  • Hong, M., Schmidt-Rohr, K. and Nanz, A. (1995) Biophys. J., 69, 1939-1950.

    Google Scholar 

  • Howard, K.P. and Opella, S.J. (1996) J. Magn. Reson. Ser., B112, 91-94.

    Google Scholar 

  • Losonczi, J.A. and Prestegard, J.H. (1998) Biochemistry, 37, 706-716.

    Google Scholar 

  • Luchette, P.A., Vetman, T.N., Prosser, R.S., Hancock, R.E.W., Nieh, M.P., Glinka, C.J., Krueger, S. and Katsaras, J. (2001) Biochim. Biophys. Acta, 1513, 83-94.

    Google Scholar 

  • Milon, A., Miyazawa, T. and Higashijima, T. (1990) Biochemistry, 29, 65-75.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Biomol. NMR, 12, 361-372.

    Google Scholar 

  • Paterson, S.J., Robson, L.E. and Kosterlitz, H.W. (1983) Brit. Med. Bull., 39, 31-36.

    Google Scholar 

  • Picone, D., D’Ursi, A., Motta, A., Tancredi, T. and Temussi, P.A. (1990) Eur. J. Biochem., 192, 433-439.

    Google Scholar 

  • Prosser, R.S., Bryant, H., Bryant, R.G. and Vold, R.R. (1999) J. Magn. Reson., 141, 256-260.

    Google Scholar 

  • Rinaldi, F., Lin, M., Shapiro, M.J. and Petersheim, M. (1997) Biophys. J., 73, 3337-3348.

    Google Scholar 

  • Sanders, C.R. and Landis, G.C. (1994) J. Am. Chem. Soc., 116, 6470-6471.

    Google Scholar 

  • Sanders, C.R. and Landis, G.C. (1995) Biochemistry, 34, 4030-4040.

    Google Scholar 

  • Sanders, C.R., Hare, B.J., Howard, K.P. and Prestegard, J.H. (1994) Prog. Nucl. Magn. Reson. Spectrosc., 26, 421-444.

    Google Scholar 

  • Sargent, D.F. and Schwyzer, R. (1986) Proc. Natl. Acad. Sci. USA, 83, 5774-5778.

    Google Scholar 

  • Seelig, J., Gally, H.-U. and Wohlgemuth, R. (1977) Biochim. Biophys. Acta, 467, 109-119.

    Google Scholar 

  • Struppe, J., Komives, E.A., Taylor, S.S. and Vold, R.R. (1998) Biochemistry, 37, 15523-15527.

    Google Scholar 

  • Tian, F., Losonczi, J.A., Fischer, M.W.F. and Prestegard, J.H. (1999) J. Biomol. NMR, 15, 145-150.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.

    Google Scholar 

  • Tycko, R., Blanco, F.J. and Ishii, Y. (2000) J. Am. Chem. Soc., 122, 9340-9341.

    Google Scholar 

  • Van Beek, J.D. (2002) Methods for Studying Heterogeneous Solid Proteins and the Application to Silk, ETH Zurich, Zurich.

    Google Scholar 

  • Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329-335.

    Google Scholar 

  • Zandomeneghi, G., Tomaselli, M., Van Beek, J.D. and Meier, B.H. (2001) J. Am. Chem. Soc., 123, 910-913.

    Google Scholar 

  • Zandomeneghi, G., Tomaselli, M., Williamson, P.T.F. and Meier, B.H. (2003) J. Biomol. NMR, 25, 113-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat H. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandomeneghi, G., Williamson, P.T., Hunkeler, A. et al. Switched-angle spinning applied to bicelles containing phospholipid-associated peptides. J Biomol NMR 25, 125–132 (2003). https://doi.org/10.1023/A:1022244025351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022244025351

Navigation