Skip to main content
Log in

Scaling of the Specific Heat of Superfluids Confined in Pores

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the scaling properties of the specific heat of the XY model on lattices H × H × L with L ≫ H (i.e. in a bar-like geometry) with respect to the thickness H of the bar, using the Cluster Monte Carlo method. We study the effect of the geometry and boundary conditions on the shape of the universal scaling function of the specific heat by comparing the scaling functions obtained for cubic, film, and bar-like geometry. In the presence of physical boundary conditions applied along the sides of the bars we find good agreement between our Monte Carlo results and the most recent experimental data for superfluid helium confined in pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28 1516 (1972); M. E. Fisher, Rev. Mod. Phys. 46 597 (1974); V. Privman, Finite Size Scaling and Numerical Simulation of Statistical systems, Singapore: World Scientific 1990.

    Google Scholar 

  2. E. Brezin, J. Physique 43 15 (1982).

    Google Scholar 

  3. J. A. Nissen, T. C. P. Chui, and J. A. Lipa, J. Low Temp. Phys. 92 353 (1993), Physica B194–196 615 (1994).

    Google Scholar 

  4. R. Schmolke, A. Wacker, V. Dohm, and D. Frank, Physica B165 & 166 575 (1990).

    Google Scholar 

  5. V. Dohm, Physica Scripta T49 46 (1993).

    Google Scholar 

  6. P. Sutter and V. Dohm, Physica B194–196 613 (1994); W. Huhn and V. Dohm, Phys. Rev. Lett. 61 1368 (1988).

    Google Scholar 

  7. M. Krech and S. Dietrich, Phys. Rev. A46 1886 (1992), 1922 (1992).

    Google Scholar 

  8. N. Schultka and E. Manousakis, Phys. Rev. Lett. 75 2710 (1995).

    Google Scholar 

  9. N. Schultka and E. Manousakis, Phys. Rev. B52 7528 (1995).

    Google Scholar 

  10. N. Schultka and E. Manousakis, J. Low Temp. Phys. (in Press).

  11. T. Chen and F. M. Gasparini, Phys. Rev. Lett. 40, 331 (1978); F. M. Gasparini, T. Chen and B. Bhattacharrya, Phys. Rev. B 23, 5797 (1981).

    Google Scholar 

  12. T.-P. Chen, PhD thesis, University of New York, Buffalo, (1977).

  13. M. Coleman and J. A. Lipa, Phys. Rev. Lett. 74 286 (1995).

    Google Scholar 

  14. H. Kleinert, Gauge Fields in Condensed Matter, Singapore: World Scientific 1989.

    Google Scholar 

  15. U. Wolff, Phys. Rev. Lett. 62 361 (1989).

    Google Scholar 

  16. W. Janke, Phys. Lett. A148 306 (1992).

    Google Scholar 

  17. L. S. Goldner and G. Ahlers, Phys. Rev. B45 13129 (1992).

    Google Scholar 

  18. A. P. Gottlob and M. Hasenbusch, Physica A201 593 (1993).

    Google Scholar 

  19. J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76 944 (1996).

    Google Scholar 

  20. J. A. Lipa, private communication.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultka, N., Manousakis, E. Scaling of the Specific Heat of Superfluids Confined in Pores. Journal of Low Temperature Physics 111, 783–791 (1998). https://doi.org/10.1023/A:1022227006671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022227006671

Keywords

Navigation