Skip to main content
Log in

Hydrodynamic Damping in Trapped Bose Gases

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δ v which includes the hydrodynamic damping due to the shear viscosity θ and the thermal conductivity κ. Following Kavoulakis, Pethick and Smith, we introduce a spatial cutoff in our linearized equations when the density is so low that the hydrodynamic description breaks down. Explicit expressions are given for θ and κ, which are position-dependent through dependence on the local fugacity when one includes the effect of quantum degeneracy of the trapped gas. We also discuss a trapped Bose-condensed gas, generalizing the work of Zaremba, Griffin and Nikuni to include hydrodynamic damping due to the (non-condensate) normal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Jin et al., Phys. Rev. Lett. 77, 420 (1996); M.-O. Mewes et al., Phys. Rev. Lett. 77, 992 (1996).

    Google Scholar 

  2. D. S. Jin et al., Phys. Rev. Lett. 78, 764 (1997).

    Google Scholar 

  3. A. Griffin, W. C. Wu, and S. Stringari, Phys. Rev. Lett. 78, 1838 (1997).

    Google Scholar 

  4. E. Zaremba, A. Griffin, and T. Nikuni, Phys. Rev. A 57 (in press) cond-mat/9705134.

  5. M. R. Andrews et al., Phys. Rev. Lett. 79, 553 (1997).

    Google Scholar 

  6. A useful discussion of the conditions which must be satisfied to probe the hydrodynamic region is given by G. M. Kavoulakis, C. J. Pethick, and H. Smith, Phys. Rev. A 57 (in press) cond-mat/9710130.

  7. E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

    Google Scholar 

  8. E. A. Uehling, Phys. Rev. 46, 917 (1934).

    Google Scholar 

  9. G. M. Kavoulakis, C. J. Pethick, and H. Smith, private communication.

  10. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, New York (1962), Chap. 6.

    Google Scholar 

  11. T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 304 (1985); ibid. 399 (1985).

    Google Scholar 

  12. For a detailed review of the Chapman-Enskog method as applied to classical gases, see J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, London (1972).

    Google Scholar 

  13. K. Huang, Statistical Mechanics, Wiley, New York (1987), 2nd ed., p. 113.

    Google Scholar 

  14. See L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1959), p. 298.

    Google Scholar 

  15. At T BEC (when z = 1 and n c = 0), our integral equations (22) are equivalent to Eqs. (24) in the second paper in Ref. 11, and hence our results for κ and η should coincide at T BEC with Eqs. (26) of this reference. However, our numerical factors differ slightly.

  16. S. Giorgini, L. P. Pitaevskii, and S. Stringari, J. Low Temp. Phys. 109, 309 (1997).

    Google Scholar 

  17. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, Benjamin, New York (1965).

    Google Scholar 

  18. N. N. Bogoliubov, Lectures on Quantum Statistics, Gordon and Breach, New York (1970), Vol. 2, p. 148.

    Google Scholar 

  19. For example, see P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, New York (1995), Chap. 8 and especially p. 460ff.

    Google Scholar 

  20. See, for example, T. L. Ho and V. B. Shenoy, J. Low Temp. Phys. 111, 937 (1998).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikuni, T., Griffin, A. Hydrodynamic Damping in Trapped Bose Gases. Journal of Low Temperature Physics 111, 793–814 (1998). https://doi.org/10.1023/A:1022221123509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022221123509

Keywords

Navigation