Skip to main content
Log in

Pain Processing Traced by Magnetoencephalography in the Human Brain

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The temporal and spatial processing of pain perception in human was traced by magnetoencephalography (MEG). We applied a painful CO2 laser beam to the forearm of 11 normal subjects, and estimated the activated areas using a single equivalent current dipole (ECD) at each time point, and a brain electric source analysis (BESA) as a spatio-temporal multiple source analysis method. The four-source model was found to be the most appropriate; sources 1 and 2 at the secondary sensory cortex (SII) contralateral and ipsilateral to the stimulation, and sources 3 and 4 at the anterior medial temporal area (probably the amygdalar nuclei or hippocampal formation) contralateral and ipsilateral to the stimulation, respectively. Activities in all 4 areas were temporally overlapped. Activity in the primary sensory cortex (SI) contralateral to the stimulated site was not identified. Activity in the cingulate cortex was also not clearly identified. These results are probably due to one or more of the following factors; (1) the cingulate cortex is too deep, (2) the ECDs generated in the cingulate cortex are mainly oriented radially, and (3) the ECDs generated in bilateral hemispheres interfere with each other. No significant or consistent magnetic fields were recorded after 500 msec following the stimulation, probably due to the complicated spatial and temporal overlapping of activities in multiple areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt-Nielsen, L. First pain event related potentials to argon laser stimuli: recording and quantification. J. Neurol. Neurosurg. Psychiatry, 1990, 53: 398–404.

    Google Scholar 

  • Arendt-Nielsen, L. Characteristics, detection, and modulation of laser-evoked vertex potentials, Acta Anesthesiol. Scand., 1994, 38(Supplementum 98): 1–44.

    Google Scholar 

  • Bernard, J.F., Peschanski, M. and Besson, J.M. A possible (trigemino)-ponto-amygdaloid pathway for pain. Neurosci. Lett., 1989, 100: 83–88.

    Google Scholar 

  • Bernard, J.F. and Besson, J.M. The spino (trigemino) pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1990, 63: 473–490.

    Google Scholar 

  • Bernard, J.F., Huang, G.F. and Besson, J.M. Nucleus centralis of the amygdala and the globus pallidus ventralis: Electrophysiological evidence for an involvement in pain processes. J. Neurophysiol., 1992, 68: 551–569.

    Google Scholar 

  • Beydown, A., Morrow, T.J., Shen, T.F. and Casey, K.L. Variability of laser-evoked potentials: attention, arousal and lateralized differences, Electroencephalogr. Clin. Neurophysiol., 1993, 88: 173–181.

    Google Scholar 

  • Bromm, B. and Chen, C.A.N. Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalogr. Clin. Neurophysiol., 1995, 95: 14–26.

    Google Scholar 

  • Bromm, B. and Treede, R-D. Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev. Neurol. (Paris), 1991, 147: 625–643.

    Google Scholar 

  • Bromm, B., Lorenz, J. and Scharein, E. Dipole source analysis of brain activity in the assessment of pain. In: J. Kimura and H. Shibasaki (Eds.), Recent Advances in Clinical Neurophysiology. Elsevier, Amsterdam, 1996: 328–335.

    Google Scholar 

  • Burton, H. Second sensory cortex and related areas. In: E.G. Jones and A. Peters (Eds.), The Cerebral Cortex, Vol. 5, New York: Prenum Press, 1986: 31–98.

    Google Scholar 

  • Casey, K.L., Minoshima, S., Berger, K.L., Koeppe, R.A., Morrow, T.J. and Frey, K.A. Positron emission tomographic analysis of cerebral structures activated specifically by receptive noxious heat stimuli. J. Neurophysiol., 1994, 71: 802–807.

    Google Scholar 

  • Coghill, R.C., Talbot, J.D., Evans, A.C., Meyer, E., Gjedde, A., Bushnell, M.C. and Duncan, G.H. Distributed processing of pain and vibration by the human brain. J. Neurosci., 1994, 14: 4095–4108.

    Google Scholar 

  • Davis, K.D., Wood, M.L., Crawley, A.P. and Mikulis, D.J. FMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. NeuroReport, 1995, 7: 321–325.

    Google Scholar 

  • Friedman, D.P., Murray, E.A., O'neill, J.B. and Mishkin, M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch. J. Comp. Neurol., 1986, 252: 323–347.

    Google Scholar 

  • Gibson, S.J., LeVasseur, S.A. and Helme, R.D. Cerebral event-related responses induced by CO2 laser stimulation in subjects suffering from cervico-brachial syndrome, Pain, 1991, 147: 173–182.

    Google Scholar 

  • Hari, R., Kaukoranta, E., Reinikainen, K., Huopaniemie, T. and Mauno, J. Neuromagnetic localization of cortical activity evoked by painful dental stimulation in man. Neurosci. Lett., 1983, 42: 77–82.

    Google Scholar 

  • Howland, E.W., Wakai, R.T., Mjaanes, B.A., Balog, J.P. and Cleeland, C.S. Whole head mapping of magnetic fields following painful electric finger shock. Cogn. Brain Res., 1995, 2: 165–172.

    Google Scholar 

  • Huttunen, J., Kobal, G., Kaukoranta, E. and Hari, R. Cortical responses to painful CO2 stimulation of nasal mucosa; A magnetoencephalographic study in man. Electroencephalogr. Clin. Neurophysiol., 1986, 64: 347–349.

    Google Scholar 

  • Jones, A.K.P., Brown, W.D., Eriston, K.J., Qi, L.Y. and Frackowiak, R.S.J. Cortical and subcortical localization of response to pain in man using positron emission tomography, Proc. R. Soc. Lond. B., 1991, 244: 39–44.

    Google Scholar 

  • Joseph, J., Howland, E.W., Wakai, R., Backonja, M., Baffa, O., Potenti, F.M. and Cleeland, C.S. Late pain-related magnetic fields and electric potentials evoked by intracutaneous electric finger stimulation. Electroencephalogr. Clin. Neurophysiol., 1991, 80: 46–52.

    Google Scholar 

  • Juliano, S.L., Hand, P.J. and Whitsel, B.L. Patterns of metabolic activity in cytoarchitectural area SII and surround cortical fields of the monkey. J. Neurophysiol., 1983, 50: 961–980.

    Google Scholar 

  • Kakigi, R. and Shibasaki, H. Scalp topography of mechanically and electrically evoked somatosensory potentials in man. Electroencephalogr. Clin. Neurophysiol., 1984, 59: 44–56.

    Google Scholar 

  • Kakigi, R., Shibasaki, H. and Ikeda, A. Pain-related somatosensory evoked potentials following CO2 laser stimulation in man. Electroencephalogr. Clin. Neurophysiol., 1989, 74: 131–138.

    Google Scholar 

  • Kakigi, R., Shibasaki, H., Tanaka, K., Ikeda, T., Oda, K-I., Endo, C., Ikeda, A., Neshige, R., Kuroda, Y., Miyata, K., Yi, S. and Araki, S. CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between electrophysiological and histopathological findings, Muscle Nerve, 1991a, 14: 441–450.

    Google Scholar 

  • Kakigi, R., Shibasaki, H., Kuroda, Y., Neshige, R., Endo, C., Tabuchi, K. and Kishikawa, T. Pain-related somatosensory evoked potentials in syringomyelia. Brain, 1991b, 114: 1871–1889.

    Google Scholar 

  • Kakigi, R., Endo, C., Neshige, R., Kuroda, Y. and Shibasaki, H. Estimation of conduction velocity of A δ fibers in humans, Muscle Nerve, 1991c, 14: 1193–1196.

    Google Scholar 

  • Kakigi, R. and Shibasaki, H. Estimation of conduction velocity of the spino-thalamic tract in man. Electroencephalogr. Clin. Neurophysiol., 1991, 80: 39–45.

    Google Scholar 

  • Kakigi, R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci. Res., 1994, 20: 165–174.

    Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Watanabe, S., Shimojo, M. and Kitamura, Y. Gating of somatosensory evoked responses during active finger movement in man: magnetoencephalographic studies, J. Neurol. Sci., 1995a, 128: 195–204.

    Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Shimojo, M., Kitamura, Y. and Watanabe, S. Topography of somatosensory evoked magnetic fields following posterior tibial nerve stimulation. Electroencephalogr. Clin. Neurophysiol., 1995b, 95: 127–134.

    Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Kitamura, Y., Shimojo, M. and Watanabe, S. Pain-related magnetic fields following CO2 laser stimulation in man. Neurosci. Lett., 1995c, 192: 45–48.

    Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Kitamura, Y., Shimojo, M., Watanabe, S. and Nakamura, A. Effects of tactile interference stimulation on somatosensory evoked magnetic fields. NeuroReport, 1996a, 7: 405–408.

    Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Kitamura, Y., Shimojo, M. and Watanabe, S. (1996b) Pain-related brain responses following CO2 laser stimulation: magnetoencephalographic studies. In: I. Hashimoto, Y. Okada, and S. Ogawa (Eds), Visualization of Information Processing in the Human Brain. Recent Advances in MEG and Functional MRI. Electroencephalogr. Clin. Neurophysiol., 1996b, supplement 47: 111–120.

  • Kanda, M., Fujiwara, N., Xu, X., Shindo, K., Nagamine, T., Ikeda, A. and Shibasaki, H. Pain-related and cognitive components of somatosensory evoked potentials following CO2 laser stimulation in man. Electroencephalogr. Clin. Neurophysiol., 1996, 100: 105–114.

    Google Scholar 

  • Kenshalo, D.R. Jr. and Willis, W.D. Jr. The role of the cerebral cortex in pain perception. In: A. Peters and E.G. Jones (Eds.), The Cerebral Cortex. Vol 9, New York, Plenum Press, 1991: 153–211.

    Google Scholar 

  • Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., Shimojo, M. and Watanabe, S. Pain-related somatosensory evoked magnetic fields. Electroencephalogr. Clin. Neurophysiol., 1995, 95: 463–474.

    Google Scholar 

  • Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., Shimojo, M and Watanabe, S. Pain-related somatosensory evoked magnetic fields following lower limb stimulation. J. Neurol. Sci., 1997, 145: 187–194.

    Google Scholar 

  • Kunde, V. and Treede, R-D. Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli. Electroecnephalogr. Clin. Neurophysiol., 1993, 88: 280–289.

    Google Scholar 

  • Laudahn, R., Kohlhoff, H. and Bromm, B. Magnetoencephalography in the investigation of the cortical pain processing system. In: B. Bromm and J.E. Desmedt (Eds.), Pain and the Brain. From nociception to Cognition. Advances in Pain Research and Therapy. Vol 22, New York, Raven Press, 1995: 267–282.

    Google Scholar 

  • Ma, W. and Peschanski, M. Spinal and trigeminal projections to the parabrachial nucleus in the rat: Electron-microscopic evidence of a spino-ponto-amygdalian somatosensory pathway. Somatosens. Res., 1988, 5: 247–257.

    Google Scholar 

  • Miyazaki, M., Shibasaki, H., Kanda, M., Xu, X., Shindo, K., Honda, M., Ikeda, A., Nagamine, T., Kaji, R. and Kimura, J. Generator mechanisms of pain-related evoked potentials following CO2 laser stimulation of the hand: scalp topography and effect of predictive warning signal. J. Clin. Neurophysiol., 1994, 11: 242–254.

    Google Scholar 

  • Mor, J. and Carmon, A. Laser emitted radiant heat for pain research. Pain, 1975, 1: 233–237.

    Google Scholar 

  • Rainville, P., Duncan, G.H., Price, D.D., Carrier, B. and Bushnell, C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 1997, 277: 968–971.

    Google Scholar 

  • Robinson, C.J. and Burton, H. Somatic submodality distribution within the second somatosensory (SII), 7b, retinoinsula of M. fascicularis. J. Comp. Neurol., 1982, 192: 93–108.

    Google Scholar 

  • Rossini, P.M., Narici, L., Romani, G.L., Traversa, R., Cecchi, L., Cilli, M. and Urbano, A. Short latency somatosensory evoked responses to median nerve stimulation in healthy humans: electric and magnetic recordings. Int. J. Neurosci., 1989, 46: 67–76.

    Google Scholar 

  • Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol., 1987, 32: 11–22.

    Google Scholar 

  • Scherg, M. BESA-M (Version 2.1), MEGIS Software GmbH, Munich, FRG, 1995.

    Google Scholar 

  • Shimojo, M., Kakigi, R., Hoshiyama, M., Koyama, S., Kitamura, Y. and Watanabe, S. Intracerebral interactions caused by bilateral median nerve stimulation in man: a magnetoencephalographic study. Neurosci, Res., 1996a, 24: 175–181.

    Google Scholar 

  • Shimojo, M., Kakigi, R., Hoshiyama, M., Koyama, S., Kitamura, Y. and Watanabe, S. Differentiation of receptive fields in the sensory cortex following stimulation of various nerves of the lower limb in humans: a magnetoencephalographic study. J. Neurosurg., 1996b, 85: 255–262.

    Google Scholar 

  • Siedenberg, R. and Treede, R-D. Laser-evoked potential: exogeneous and endogeneous components. Electroencephalogr. Clin. Neurophysiol., 1996, 100: 240–249.

    Google Scholar 

  • Svensson, P., Minoshima, S., Beydoun, A., Morrow, T.J. and Casey, K.L. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol., 1997, 78:450–460.

    Google Scholar 

  • Talbot, J.D., Marrett, S., Evans, A.C., Meyer, E., Bushnell, M.C. and Duncan, G.H. Multiple representations of pain in human cerebral cortex. Science, 1991, 251: 1355–1358.

    Google Scholar 

  • Tarkka, I.M. and Treede, R-D. Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J. Clin. Neurophysiol., 1993, 10: 513–519.

    Google Scholar 

  • Towell, A.D. and Boyd, S.G. Sensory and cognitive components of the CO2 laser evoked cerebral potential. Electroencephalogr. Clin. Neurophysiol., 1993, 88: 237–239.

    Google Scholar 

  • Treede, R.-D., Kief, S., Holzer, T. and Bromm, B. Late somatosensory evoked cerebral potentials in responses to cutaneous heat stimuli. Electroencephalogr, Clin. Neurophysiol., 1988, 70: 429–441.

    Google Scholar 

  • Valeriani, M., Rambaud, L. and Mauguiere, F. Scalp topography and dipolar source modelling of potentials evoked by CO2 laser stimulation of the hand. Electroencephalogr. Clin. Neurophysiol., 1996, 100: 343–353.

    Google Scholar 

  • Watanabe, S., Kakigi, R., Hoshiyama, M., Kitamura, Y., Koyama, S. and Shimojo, M. Effects of noxious cooling of the skin on pain perception in man. J. Neurol. Sci., 1996, 135: 68–73.

    Google Scholar 

  • Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in human somatosensory cortex: Identification by combined magnetic and potential recordings. Science, 1985, 227: 1051–1053.

    Google Scholar 

  • Xu, X., Kanda, M., Shindo, K., Fujiwara, N., Nagamine, T., Ikeda, A., Honda, M., Tachibana, N., Barrett, G., Kaji, R., Kimura, J. and Shibasaki, H. Pain-related somatosensory evoked potentials following CO2 laser stimulation of foot in man. Electroencephalogr. Clin. Neurophysiol., 1995, 96: 12–23.

    Google Scholar 

  • Xu, X., Fukuyama, H., Yazawa, S., Mima, T., Hanakawa, T., Magata, Y., Kanda, M., Fujiwara, N., Shindo, K., Nagamine, T. and Shibasaki, H. Functional localization of pain perception in the human brain studies by positron emission tomography. NeuroReport, 1997, 8: 555–559.

    Google Scholar 

  • Yamamoto, M., Kachi, T. and Igata, A. (1995) pain-related and electrically stimulated somatosensory evoked potentials in patients with stroke. Stroke, 1995, 26: 426–429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, S., Kakigi, R., Koyama, S. et al. Pain Processing Traced by Magnetoencephalography in the Human Brain. Brain Topogr 10, 255–264 (1998). https://doi.org/10.1023/A:1022218906322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022218906322

Navigation