Biochemical Genetics

, Volume 35, Issue 1–2, pp 59–76 | Cite as

The Glycophorin A Gene Family in Gorillas: Structure, Expression, and Comparison with the Human and Chimpanzee Homologues

  • Shen-Si Xie
  • Cheng-Han Huang
  • Marion E. Reid
  • Antoine Blancher
  • Olga O. Blumenfeld


Homologues of MN blood group antigens, encoded by members of the glycophorin A (GPA) gene family, are expressed in man, anthropoid apes, and some species of Old World monkeys. Previous studies had shown that a three-gene framework, most closely related to that in man, is present in the chimpanzee. Here we report the genomic structure, transcript map, and protein expression of the GYPA locus in gorillas. Compared to the corresponding human and chimpanzee homologues, gorilla GPA, GPB, and GPB/E genes each showed a high degree of sequence identity, with the same exon-intron organization. However, the expression of exons III, IV, or V encoding the extracellular or membrane domains of homologous glycophorins varied among the three species. Gorilla GPA and GPB/E genes were unique in that the former occurred in two allelic forms with or without the expression of exon III, whereas the latter contained one (ψ exon III) instead of two silenced exons (ψ exons III and IV). Differences from human but not chimpanzee GPA also included the presence of a hybrid M/N epitope and the absence of the sequon for N-glycosylation. Owing to the retention of a functional exon III, gorilla GPB was more similar to chimpanzee GPB than human GPB. A transspecies allele was identified in the gorilla that gave rise to the Henshaw (He)-like antigen similar to that found in man. These results provide further insight into the model for evolution of the GPA gene family, indicating that the mechanisms underlying inter- and intraspecific polymorphism of glycophorins could predate the divergence of gorillas as the consequence of gene duplication and diversification.

glycophorins gorilla evolution gene family gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blumenfeld, O. O., and Huang, C. H. (1995). Molecular genetics of the glycophorin gene family, the antigens for MNSs blood groups: Multiple gene rearrangements and modulation of splice site usage result in extensive diversification. Hum. Mutat. 6:199.Google Scholar
  2. Blumenfeld, O. O., and Puglia, K. (1979). Preparation of cyanogen bromide fragments of MM, NN and MN glycoproteins (glycophorins) from human erythrocyte membranes of single donors. Biochim. Biophys. Acta 579:95.Google Scholar
  3. Dahr, W., Kordowicz, M., Judd, W. J., Moulds, J., Beyreuther, K., and Kruger, J. (1984). Structural analysis of the Ss sialoglycoprotein specific for Henshaw blood group from human erythrocyte membranes. Eur. J. Biochem. 141:51.Google Scholar
  4. Dodge, J. T., Mitchell, C., and Hanahan, D. J. (1963). The preparation and chemical characteristics of hemoglobin free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100:119.Google Scholar
  5. Fukuda, M. (1993). Molecular genetics of the glycophorin A gene cluster. Semin. Hematol. 30:138.Google Scholar
  6. Goossens, M., and Kan, Y. W. (1981). DNA analysis in the diagnosis of hemoglobin disorders. Methods Enzymol. 76:805.Google Scholar
  7. Honma, K., Tomita, M., and Hamada, A. (1980). Amino acid sequence and attachment sites of oligosaccharide units of porcine erythrocyte glycophorin. J. Biochem. 88:1679.Google Scholar
  8. Huang, C. H., and Blumenfeld, O. O. (1995). MNSs blood groups and major glycophorins: Molecular basis for allelic variation. In Cartron, J. P., and Rouger, P. (eds.), Molecular Basis of Human Major Blood Group Antigens, Blood Cell Biochemistry, Vol. 6, Plenum Press, New York, pp. 153–188.Google Scholar
  9. Huang, C. H., Reid, M. E., and Blumenfeld, O. O. (1994). Remodeling of the transmembrane segment in human glycophorin by aberrant RNA splicing. J. Biol. Chem. 269:10804.Google Scholar
  10. Huang, C. H., Xie, S. S., Socha, W., and Blumenfeld, O. O. (1995). Sequence diversification and exon inactivation in the glycophorin A gene family from chimpanzee to human. J. Mol. Evol. 41:478.Google Scholar
  11. Huang, C. H., Blumenfeld, O. O., Reid, M. E., Chen, Y., Daniels, G., and Smart, E. (1997). Alternative splicing of a novel glycophorin allele GPHe(GL) generates two protein isoforms in the human erythrocyte membrane. Blood (in press).Google Scholar
  12. Kudo, S., and Fukuda, M. (1989). Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences. Proc. Natl. Acad. Sci. USA 86:4619.Google Scholar
  13. Kudo, S., and Fukuda. M. (1990). Identification of a novel human glycophorin, glycophorin E, by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction. J. Biol. Chem. 265:1102.Google Scholar
  14. Lu, Y. Q., Liu, J. F., Socha, W. W., Nagel, R. L., and Blumenfeld, O. O. (1987). Polymorphism of glycophorins in nonhuman primate erythrocytes. Biochem. Genet. 25:477.Google Scholar
  15. Lu, W. M., Huang, C. H., Socha, W. W., and Blumenfeld, O. O. (1990). Polymorphisms and gross structure of glycophorin genes in common chimpanzees. Biochem. Genet. 28:399.Google Scholar
  16. Matsui, Y., Natoris, S., and Obinata, M. (1989). Isolation of the cDNA clone for mouse glycophorins, erythroid-specific membrane protein. Gene 77:325.Google Scholar
  17. Murayama, J., Tomita, M., and Hamada, A. (1982). Primary structure of horse glycophorin HA, Its amino acid sequence has a unique homology with those of human and porcine erythrocyte glycophorins. J. Membr. Biol. 64:205.Google Scholar
  18. Murayama, J., Yamashita, T., Tomita, M., and Hamada, A. (1983). Amino acid sequence and oligosaccharide attachment sites of the glycosylated domain of dog erythrocyte glycophorin. Biochim. Biophys. Acta 742:477.Google Scholar
  19. Onda, M., Kudo, S., Rearden, A., Mattei, M.-G., and Fukuda, M. (1993). Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes. Proc. Natl. Acad. Sci. USA 90:7220.Google Scholar
  20. Onda, M., Kudo, S., and Fukuda, M. (1994). Genomic organization of glycophorin A gene family revealed by yeast artificial chromosomes containing human genomic DNA. J. Biol. Chem. 269:13013.Google Scholar
  21. Race, R. R., and Sanger, R. (1975). The MNSs blood groups. In Blood Groups in Man, 6th ed., Blackwell Scientific, London, pp. 92–138.Google Scholar
  22. Rearden, A. (1986). Evolution of glycophorin A in the hominoid primates studied with monoclonal antibodies, and description of a sialoglycoprotein analogous to human glycophorin in chimpanzee. J. Immunol. 136:2504.Google Scholar
  23. Rearden, A., Phan, H., Kudo, S., and Fukuda, M. (1990a). Evolution of the glycophorin gene family in the hominoid primates. Biochem. Genet. 28:209.Google Scholar
  24. Rearden, A., Phan, H., and Fukuda, M. (1990b). Multiple restriction fragment length polymorphisms associated with the Vc determinant of the MN blood group-related chimpanzee V-A-B-D systems. Biochem. Genet. 28:223.Google Scholar
  25. Rearden, A., Magnet, A., Kudo, S., and Fukuda, M. (1993). Glycophorin B and glycophorin E genes arose from the glycophorin A ancestral gene via two duplications during primate evolution. J. Biol. Chem. 268:2260.Google Scholar
  26. Reid, M. E., Storry, J. R., Ralph, H., Blumenfeld, O. O., and Huang, C.-H. (1996). Expression and quantitative variation of the low-incidence blood group antigen Henshaw on some S-s-RBCs. Transfusion 36:719.Google Scholar
  27. Ruvolo, M., Pan, D., Zehr, S., Goldberg, T., and Disotell, T. R. (1994). Gene trees and hominoid phylogeny. Proc. Natl. Acad. Sci. USA 91:8900.Google Scholar
  28. Socha, W. W., and Moor-Jankowski, S. (1979). Blood groups of anthropoid apes and their relationship to human blood groups. J. Hum. Evol. 8:453.Google Scholar
  29. Weiner, S., Gordon, E. B., Moor-Jankowski, S., and Socha, W. W. (1972). Homologues of the human M-N blood types in gorillas and other nonhuman primates. Hematologia 6:419.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Shen-Si Xie
    • 1
  • Cheng-Han Huang
    • 2
  • Marion E. Reid
    • 2
  • Antoine Blancher
    • 3
  • Olga O. Blumenfeld
    • 1
  1. 1.Department of BiochemistryAlbert Einstein College of MedicineBronx
  2. 2.New York Blood CenterLindsley F. Kimball Research InstituteNew York
  3. 3.Laboratoire d'Immunogenetique MoleculaireUniversity Paul Sabatier, Hospital PurpanToulouseFrance

Personalised recommendations