Skip to main content

Nitric Oxide, Platelet Function, Myocardial Infarction and Reperfusion Therapies

Abstract

Platelets play an important role in physiologic hemostasis and pathologic thrombosis that complicate the course of vascular disorders. A number of platelet functions including adhesion, aggregation and recruitment are controlled by nitric oxide (NO) generated by platelets and the endothelial cells. Derangements in this generation may contribute to the pathogenesis of thrombotic complications of vascular disorders. The pharmacologic supplementation of the diseased vasculature with drugs releasing NO may help to restore the hemostatic balance.

This is a preview of subscription content, access via your institution.

References

  1. Stein B, Badimon L, Israel DH, Badimon JJ, Fuster V. Thrombosis/platelets and other blood factors in acute coronary syndromes. Cardiovascular Clinics 1989;20:105-129.

    Google Scholar 

  2. Sawicki G, Salas E, Murat J, Miszta Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997;386:616-619.

    Google Scholar 

  3. Radomski M, Radomski A. Regulation of blood cell function by the endothelial cells. In: Vallance P, Webb D, eds. Vascular Endothelium in Human Physiology and Pathophysiology. Harwood Academic Publishers, 2000:95-106.

  4. Murohara T, Parkinson SJ, Waldman SA, Lefer AM. Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets. Role of protein kinase C. Arterioscler Thromb Vasc Biol 1995;15:2068-2075.

    Google Scholar 

  5. Radomski A, Stewart MW, Jurasz P, Radomski MW. Pharmacological characteristics of solid-phase von Willebrand factor in human platelets. Br J Pharmacol 2001;134:1013-1020.

    Google Scholar 

  6. Jurasz P, Stewart MW, Radomski A, Khadour F, Duszyk M, Radomski MW. Role of vonWillebrand factor in tumour cell-induced platelet aggregation: Differential regulation by NO and prostacyclin. Br J Pharmacol 2001;134:1104-1112.

    Google Scholar 

  7. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-376.

    Google Scholar 

  8. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524-526.

    Google Scholar 

  9. Moncada S, Radomski MW, Palmer RM. Endotheliumderived relaxing factor. Identification as nitric oxide and 52 Alonso and Radomski role in the control of vascular tone and platelet function. Biochem Pharmacol 1988;37:2495-2501.

    Google Scholar 

  10. Marletta MA. Nitric oxide synthase: Aspects concerning structure and catalysis. Cell 1994;78:927-930.

    Google Scholar 

  11. Knowles RG, Palacios M, Palmer RM, Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989;86:5159-5162.

    Google Scholar 

  12. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990;87:682-685.

    Google Scholar 

  13. Moncada S, Higgs EA. Endogenous nitric oxide: Physiology, pathology and clinical relevance. Eur J Clin Invest 1991;21:361-374.

    Google Scholar 

  14. Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 1991;42:1849-1857.

    Google Scholar 

  15. Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-142.

    Google Scholar 

  16. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991;88:10480-10484.

    Google Scholar 

  17. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265-9269.

    Google Scholar 

  18. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664-666.

    Google Scholar 

  19. Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: Nitric oxide is an intermediate. Biochemistry 1988;27:8706-8711.

    Google Scholar 

  20. Radomski MW, Palmer RM, Moncada S. An Larginine/ nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 1990;87:5193-5197.

    Google Scholar 

  21. Szabo C, Thiemermann C. Regulation of the expression of the inducible isoform of nitric oxide synthase. Adv Pharmacol 1995;34:113-153.

    Google Scholar 

  22. Gryglewski RJ, Moncada S, Palmer RM. Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 1986;87:685-694.

    Google Scholar 

  23. Moncada S, Palmer RM, Gryglewski RJ. Mechanism of action of some inhibitors of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 1986;83:9164-9168.

    Google Scholar 

  24. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987;92:181-187.

    Google Scholar 

  25. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987;2:1057-1058.

    Google Scholar 

  26. Radomski MW, Palmer RM, Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 1987;148:1482-1489.

    Google Scholar 

  27. Radomski MW, Palmer RM, Moncada S. The antiaggregating properties of vascular endothelium: Interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987;92:639-646.

    Google Scholar 

  28. Radomski MW, Palmer RM, Moncada S. Characterization of the L-arginine: Nitric oxide pathway in human platelets. Br J Pharmacol 1990;101:325-328.

    Google Scholar 

  29. Malinski T, Radomski MW, Taha Z, Moncada S. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun 1993;194:960-965.

    Google Scholar 

  30. Muruganandam A, Mutus B. Isolation of nitric oxide synthase from human platelets. Biochim Biophys Acta 1994;1200:1-6.

    Google Scholar 

  31. Chen LY, Mehta JL. Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol 1996;27:154-158.

    Google Scholar 

  32. Wallerath T, Gath I, Aulitzky WE, Pollock JS, Kleinert H, Forstermann U. Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 1997;77:163-167.

    Google Scholar 

  33. Berkels R, Stockklauser K, Rosen P, Rosen R. Current status of platelet NO synthases. Thrombosis Research 1997;87:51-55.

    Google Scholar 

  34. FreMathur A, Robinson MS, Cotton J, Martin JF, Erusalimsky JD. Platelet reactivity in acute coronary syndromes: Evidence for differences in platelet behaviour between unstable angina and myocardial infarction. Thromb Haemost 2001;85:989-994.

    Google Scholar 

  35. Mehta JL, Conti CR. Aspirin in myocardial ischemia: Why, when, and how much? Clin Cardiol 1989;12:179-184.

    Google Scholar 

  36. Harrington RA. Overview of clinical trials of glycoprotein IIb-IIIa inhibitors in acute coronary syndromes. Am Heart J 1999;138:276-286.

    Google Scholar 

  37. Parratt JR. Pathophysiology of myocardial ischemia: Importance of platelet-vessel wall interactions. Cardiovasc Drugs Ther 1988;2:35-40.

    Google Scholar 

  38. Folts JD, Gallagher K, Rowe GG. Blood flow reductions in stenosed canine coronary arteries: Vasospasm or platelet aggregation? Circulation 1982;65:248-255.

    Google Scholar 

  39. Kowey PR, Verrier RL, Lown B, Handin RI. Influence of intracoronary platelet aggregation on ventricular electrical properties during partial coronary artery stenosis. The American Journal of Cardiology 1983;51:596-602.

    Google Scholar 

  40. Shimada Y, Kutsumi Y, Nishio H, Asazuma K, Tada H, Hayashi T, Nakai T, Morioka K. Role of platelets in myocardial ischemia-reperfusion injury in dogs. Jpn Circ J 1997;61:241-248.

    Google Scholar 

  41. Stein B, Fuster V. Role of platelet inhibitor therapy in myocardial infarction. Cardiovasc Drugs Ther 1989;3:797-813.

    Google Scholar 

  42. Fuster V. Role of platelets in the development of atherosclerotic disease and possible interference with platelet inhibitor drugs. Scand J Haematol Suppl 1981;38:1-38.

    Google Scholar 

  43. Willerson JT, Campbell WB, Winniford MD, Schmitz J, Apprill P, Firth BG, Ashton J, Smitherman T, Bush L, Buja LM. Conversion from chronic to acute coronary artery disease: Speculation regarding mechanisms. The American Journal of Cardiology 1984;54:1349-1354.

    Google Scholar 

  44. Willerson JT, Willerson JT. Conversion from chronic to acute coronary heart disease syndromes. Role of platelets and platelet products. Tex Heart Inst J 1995;22:13-19.

    Google Scholar 

  45. Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 1989;80:198-205.

    Google Scholar 

  46. de Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ. Effects of S-nitroso-glutathione in the human forearm circulation: Evidence for selective inhibition of platelet activation. Cardiovasc Res 1994;28:691-694.

    Google Scholar 

  47. Radomski MW, Salas E. Nitric oxide-biological mediator, modulator and factor of injury: Its role in the pathogenesis of atherosclerosis. Atherosclerosis 1995;118 Suppl:S69-80.

    Google Scholar 

  48. Beckman J, Tsai J. Reactions and diffusion of nitric oxide and peroxynitrite. The Biochemist 1994;16:8-10.

    Google Scholar 

  49. Moro MA, Darley U smar VM, Goodwin DA, Read NG, Zamora Pino R, Feelisch M, Radomski MW, Moncada S. Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 1994;91:6702-6706.

    Google Scholar 

  50. Villa LM, Salas E, Darley Usmar VM, Radomski MW, Moncada S. Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 1994;91:12383-12387.

    Google Scholar 

  51. Moro MA, Darley Usmar VM, Lizasoain I, Su Y, Knowles RG, Radomski MW, Moncada S. The formation of nitric oxide donors from peroxynitrite. Br J Pharmacol 1995;116:1999-2004.

    Google Scholar 

  52. Brown AS, Moro MA, Masse JM, Cramer EM, Radomski M, Darley Usmar V. Nitric oxide-dependent and independent effects on human platelets treated with peroxynitrite. Cardiovasc Res 1998;40:380-388.

    Google Scholar 

  53. Naseem KM, Low SY, Sabetkar M, Bradley NJ, Khan J, Jacobs M, Bruckdorfer KR. The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. FEBS Lett2000;473:119-122.

    Google Scholar 

  54. Patel VC, Yellon DM, Singh KJ, Neild GH, Woolfson RG. Inhibition of nitric oxide limits infarct size in the in situ rabbit heart. Biochem Biophys Res Commun 1993;194:234-238.

    Google Scholar 

  55. Woolfson RG, Patel VC, Neild GH, Yellon DM. Inhibition of nitric oxide synthesis reduces infarct size by an adenosinedependent mechanism. Circulation 1995;91:1545-1551.

    Google Scholar 

  56. Curtis MJ, Pabla R. Nitric oxide supplementation or synthesis block-which is the better approach to treatment of heart disease? Trends Pharmacol Sci 1997;18:239-244.

    Google Scholar 

  57. Schulz R, Wambolt R. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemiareperfusion injury. Cardiovasc Res 1995;30:432-439.

    Google Scholar 

  58. Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. The Journal of Pharmacology and Experimental Therapeutics 1992;260:668-675.

    Google Scholar 

  59. Lefer DJ, Nakanishi K, Johnston WE, Vinten Johansen J. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs. Circulation 1993;88:2337-2350.

    Google Scholar 

  60. Rossoni G, Berti M, Colonna VD, Bernareggi M, Del Soldato P, Berti F. Myocardial protection by the nitroderivative of aspirin, NCX 4016: In vitro and in vivo experiments in the rabbit. Ital Heart J 2000;1:146-155.

    Google Scholar 

  61. Slawinski M, Grodzinska L, Kostka Trabka E, Bieron K, Goszcz A, Gryglewski RJ. L-arginine-substrate for no synthesis-its beneficial effects in therapy of patients with peripheral arterial disease: Comparison with placebopreliminary results. Acta Physiol Hung 1996;84:457-458.

    Google Scholar 

  62. Ceremuzynski L, Chamiec T, Herbaczynska-Cedro K. Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris.Am J Cardiol 1997;80:331-333.

    Google Scholar 

  63. Conde Pozzi I, Kleiman N. Platelet activation in acute myocardial infarction and the rationale for combination therapy. 2000;2:378-385.

    Google Scholar 

  64. Kleiman NS, Califf RM. Results from late-breaking clinical trials sessions at ACCIS 2000 and ACC 2000. American College of Cardiology. J Am Coll Cardiol 2000;36:310-325.

    Google Scholar 

  65. Lopez Farre A, Riesco A, Digiuni E, Mosquera JR, Caramelo C, de Miguel LS, Millas I, de Frutos T, Cernadas MR, Monton M, Alonso J, and Casado S. Aspirinstimulated nitric oxide production by neutrophils after acute myocardial ischemia in rabbits. Circulation 1996;94:83-87.

    Google Scholar 

  66. Coller BS. Platelet GP IIb/IIIa antagonists: The first antiintegrin receptor therapeutics.J Clin Invest 1997;99:1467-1471.

    Google Scholar 

  67. Coller BS. GP IIb/IIIa antagonists: Pathophysiologic and therapeutic insights from studies of c7E3 Fab. Thromb Haemost 1997;78:730-735.

    Google Scholar 

  68. Ghaffari S, Kereiakes DJ, Lincoff AM, Kelly TA, Timmis GC, Kleiman NS, Ferguson JJ, Miller DP, Califf RA, Topol EJ. Platelet glycoprotein IIb/IIIa receptor blockade with abciximab reduces ischemic complications in patients undergoing directional coronary atherectomy. EPILOG Investigators. Evaluation of PTCA to Improve Long-term Outcome by c7E3 GP IIb/IIIa Receptor Blockade. Am J Cardiol 1998;82:7-12.

    Google Scholar 

  69. The GUSTO V Investigators?. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: The GUSTO V randomised trial. Lancet 2001;357:1905-1914.

    Google Scholar 

  70. Weaver WD, Simes RJ, Betriu A, Grines CL, Zijlstra F, Garcia E, Grinfeld L, Gibbons RJ, Ribeiro EE, DeWood MA, Ribichini F. Comparison of primary coronary angioplasty and intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review.JAMA 1997;278:2093-2098.

    Google Scholar 

  71. Santoro G, Bolognese L. Coronary stenting and platelet glycoprotein IIb/IIIa receptor blockade in acute myocardial infarction. Am Heart J 2001;141:26-35.

    Google Scholar 

  72. Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Carroll JD, Rutherford BD, Lansky AJ. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002;346:957-966.

    Google Scholar 

  73. Adrie C, Bloch KD, Moreno PR, H urford WE, Guerrero JL, Holt R, Zapol WM, Gold HK, Semigran MJ. Inhaled nitric oxide increases coronary artery patency after thrombolysis. Circulation 1996;94:1919-1926.

    Google Scholar 

  74. Lam JY, Chesebro JH, Fuster V. Platelets, vasoconstriction, and nitroglycerin during arterial wall injury. A 54 Alonso and Radomski new antithrombotic role for an old drug. Circulation 1988;78:712-716.

    Google Scholar 

  75. Diodati J, Theroux P, Latour JG, Lacoste L, Lam JY, Waters D. Effects of nitroglycerin at therapeutic doses on platelet aggregation in unstable angina pectoris and acute myocardial infarction. The American Journal of Cardiology 1990;66:683-688.

    Google Scholar 

  76. Sinzinger H, Virgolini I, O Grady J, Rauscha F, Fitscha P. Modification of platelet function by isosorbide dinitrate in patients with coronary artery disease. Thrombosis Research 1992;65:323-335.

    Google Scholar 

  77. Yusuf S, Collins R, MacMahon S, Peto R. Effect of intravenous nitrates on mortality in acute myocardial infarction: An overview of the randomised trials. Lancet 1988;1:1088-1092.

    Google Scholar 

  78. Horowitz JD, Henry CA, Syrjanen ML, Louis WJ, Fish RD, Smith TW, Antman EM. Combined use of nitroglycerin and N-acetylcysteine in the management of unstable angina pectoris. Circulation 1988;77:787-794.

    Google Scholar 

  79. GISSI-3 GISSI III study group. Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. The Lancet 1994;343:1115-1122.

    Google Scholar 

  80. ISIS-4 (1993) ISIS collaborative group, Oxford, U.K.: Randomised study of oral isosorbide mononitrate in over 50,000 patients with suspected acute myocardial infarction. Circulation 88:I-394.

    Google Scholar 

  81. Andrews R, May JA, Vickers J, Heptinstall S. Inhibition of platelet aggregation by transdermal glyceryl trinitrate. Br Heart J 1994;72:575-579.

    Google Scholar 

  82. Patrono C. Aspirin and human platelets: From clinical trials to acetylation of cyclooxygenase and back. Trends Pharmacol Sci 1989;10:453-458.

    Google Scholar 

  83. Salas E, Miszta-Lane H, Radomski M. Regulation of platelet function by nitric oxide and other nitrogen-and-oxygen-derived species. In: Von Bruchhausen F, Walter U, eds. Handbook of Experimental Pharmacology. Springer-Verlag, 1997:371-397.

    Google Scholar 

  84. Shahbazi T, Jones N, Radomski MW, Moro MA, Gingell D. Nitric oxide donors inhibit platelet spreading on surfaces coated with fibrinogen but not with fibronectin. Thrombosis Research 1994;75:631-642.

    Google Scholar 

  85. Levin RI, Weksler BB, Jaffe EA. The interaction of sodium nitroprusside with human endothelial cells and platelets: Nitroprusside and prostacyclin synergistically inhibit platelet function. Circulation 1982;66:1299-1307.

    Google Scholar 

  86. Hines R, Barash PG. Infusion of sodium nitroprusside induces platelet dysfunction in vitro. Anesthesiology 1989;70:611-615.

    Google Scholar 

  87. Willerson JT, Igo SR, Yao SK, Ober JC, Macris MP, Ferguson JJ. Localized administration of sodium nitroprusside enhances its protection against platelet aggregation in stenosed and injured coronary arteries. Texas Heart Institute Journal 1996;23:1-8.

    Google Scholar 

  88. Wautier JL, Weill D, Kadeva H, M aclouf J, Soria C. Modulation of platelet function by SIN-1A, a metabolite of molsidomine. J Cardiovasc Pharmacol 1989;14(suppl 11):S111-114.

    Google Scholar 

  89. Hogg N, Darley Usmar VM, Wilson MT, Moncada S. The oxidation of alpha-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Lett 1993;326:199-203.

    Google Scholar 

  90. Radomski MW, Rees DD, Dutra A, Moncada S. S-nitrosoglutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 1992;107:745-749.

    Google Scholar 

  91. Langford EJ, Brown AS, Wainwright RJ, de Belder AJ, Thomas MR, Smith RE, Radomski MW, Martin JF, Moncada S. Inhibition of platelet activity by Snitrosoglutathione during coronary angioplasty. Lancet 1994;344:1458-1460.

    Google Scholar 

  92. Clancy RM, Levartovsky D, Leszczynska Piziak J, Yegudin J, Abramson SB. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: Evidence for S-nitrosoglutathione as a bioactive intermediary. Proc Natl Acad Sci USA 1994;91:3680-3684.

    Google Scholar 

  93. Mayers I, Salas E, Hurst T, Johnson D, Radomski MW. Increased nitric oxide synthase activity after canine cardiopulmonary bypass is suppressed by snitrosoglutathione. J Thorac Cardiovasc Surg 1999;117: 1009-1016.

    Google Scholar 

  94. Minuz P, Zuliani V, Gaino S, Tommasoli R, Lechi A. NOaspirins: Antithrombotic activity of derivatives of acetyl salicylic acid releasing nitric oxide. Cardiovasc Drug Rev 1998;16:31-47.

    Google Scholar 

  95. Wallace JL, Muscara MN, McKnight W, Dicay M, Del Soldato P, Cirino G. In vivo antithrombotic effects of a nitric oxide-releasing aspirin derivative, NCX-4016. Thrombosis Research 1999;93:43-50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek W. Radomski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso, D., Radomski, M.W. Nitric Oxide, Platelet Function, Myocardial Infarction and Reperfusion Therapies. Heart Fail Rev 8, 47–54 (2003). https://doi.org/10.1023/A:1022194921040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022194921040

  • nitric oxide
  • platelet function
  • myocardial infarction
  • reperfusion