Skip to main content
Log in

Maximum Consistency of Incomplete Data via Non-Invasive Imputation

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

We present an algorithm to impute missingvalues from given dataalone, and analyse its performance. Theproposed procedure is based onnon-numeric rule based data analysis, and aimsto maximise consistency of imputation from known values. Incontrast to the prevailingstatistical imputation algorithms, it does notmake representationalassumptions or presupposes other modelconstraints. Therefore, it is suitablefor a wide variety of data – sets, and can beused as a pre-processing step beforeresorting to harder numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acock, A. (1997). Working with Missing Data. Family Science Review 10: 76–102.

    Google Scholar 

  • Arbuckle, J. (1996). Amos Users Guide: Version 3.6. Chicago: SmallWaters Corp.

    Google Scholar 

  • Bentler, P. (1996). EQS: Structural Equations Program Manual. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion. Journal of the Royal Statistical Society (B) 39: 1–38.

    Google Scholar 

  • Düntsch, I. & Gediga, G. (1997). Statistical Evaluation of Rough Set Dependency Analysis. International Journal of Human-Computer Studies 46: 589–604.

    Google Scholar 

  • Düntsch, I. & Gediga, G. (1998a). Simple Data Filtering in Rough Set Systems. International Journal of Approximate Reasoning 18(1–2): 93–106.

    Google Scholar 

  • Düntsch, I. & Gediga, G. (1998b). Uncertainty Measures of Rough Set Prediction. Artificial Intelligence 106(1): 77–107.

    Google Scholar 

  • Düntsch, I. & Gediga, G. (2000). Rough Set Data Analysis: A Road to Non-Invasive Knowledge Discovery, Vol. 2 of Methoδos Primers. Bangor: Methoδos Publishers (UK).

    Google Scholar 

  • Düntsch, I. & Gediga, G. (2001). Roughian–Rough Information Analysis. International Journal of Intelligent Systems 16(1): 121–147.

    Google Scholar 

  • Graham, J. W., Hofer, S. M. & Piccinin, A. M. (1994). Analysis with Missing Data in Drug Prevention Research. In Collins, L. M. & Seitz, L. (eds.) Advances in Data Analysis for Prevention Intervention Research. Washington, NIDA Research Monograph. Series 142.

  • Grzymała-Busse, J. (1991). On the Unknown Attribute Values in Learning from Examples. In Proc of the ISMIS-91, 6th International Symposium on Methodologies for Intelligent Systems, Vol. 542 of Lecture Notes in Artificial Intelligence, 368–377. Charlotte.

    Google Scholar 

  • Lakshminarayan, K., Harp, S. A., Samad, T. & Goldman, R. P. (1996). Imputation of Missing Data Using Machine Learning Techniques. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 140–145. Menlo Park, American Association for Artificial Intelligence.

    Google Scholar 

  • Little, R. J. A. & Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley.

    Google Scholar 

  • Meng, X. L. (1995). Multiple-Imputation Inferences with Uncongenial Sources of Input (with discussion). Statistical Science 10: 538–573.

    Google Scholar 

  • Pawlak, Z. (1982). Rough Sets. Internat. J. Comput. Inform. Sci. 11: 341–356.

    Google Scholar 

  • Rubin, D. B. (1987). Multiple Imputations for Nonresponse in Surveys. New York: Wiley.

    Google Scholar 

  • Rubin, D. B. (1996). Multiple Imputation after 18+ Years (with discussion). Journal of the American Statistical Association 91: 473–489.

    Google Scholar 

  • Schafer, J. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall.

  • Wang, H., Düntsch, I. & Gediga, G. (2000). Classificatory Filtering in Decision Systems. International Journal of Approximate Reasoning 23: 111–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gediga, G., Düntsch, I. Maximum Consistency of Incomplete Data via Non-Invasive Imputation. Artificial Intelligence Review 19, 93–107 (2003). https://doi.org/10.1023/A:1022188514489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022188514489

Navigation