Skip to main content
Log in

Exponentially Decreasing Solutions of Diffraction Problems on a Rigid Periodic Boundary

  • Published:
Mathematical Notes Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. F. Rellich, Deutsche Math. Verein., 53 (1943), 57–64.

    Google Scholar 

  2. V. Yu. Gotlib, Zap. Nauchn. Sem. POMI, 250 (1998), 83–96.

    Google Scholar 

  3. A. N. Popov, Zh. Éxper. Teoret. Fiz. [Soviet Phys. JETP], 56 (1986), no. 10, 1916–1922.

    Google Scholar 

  4. D. V. Evans, M. Levitin, and D. Vassiliev, J. Fluid. Mech., 261 (1994), 21–31.

    Google Scholar 

  5. D. V. Evans, IMA J. Appl. Math., 49 (1992), 45–60.

    Google Scholar 

  6. M. Sh. Birman and G. E. Skvortsov, Izv. Vyssh. Uchebn. Zaved. Mat. [Soviet Math. (Iz. VUZ)], (1962), no. 5, 12–21.

    Google Scholar 

  7. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin–New York, 1994.

    Google Scholar 

  8. C. Wilcox, Scattering Theory for Diffraction Gratings, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  9. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space [in Russian], LGU, Leningrad, 1980.

    Google Scholar 

  10. F. A. Berezin and M. A. Shubin, The Schrödinger Equation [in Russian], Moscow State Univ., Moscow, 1983.

    Google Scholar 

  11. S. G. Mikhlin, Minimum Problem for a Quadratic Functional [in Russian], Gostekhizdat, Moscow, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamotskii, I.V., Nazarov, S.A. Exponentially Decreasing Solutions of Diffraction Problems on a Rigid Periodic Boundary. Mathematical Notes 73, 129–131 (2003). https://doi.org/10.1023/A:1022186320373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022186320373

Navigation