Skip to main content
Log in

Abstract

We investigate the deep structure of a scale space image. We concentrate on scale space critical points—points with vanishing gradient with respect to both spatial and scale direction. We show that these points are always saddle points. They turn out to be extremely useful, since the iso-intensity manifolds through these points provide a scale space hierarchy tree and induce a “pre-segmentation”: a segmentation without a priori knowledge. Furthermore, both these scale space saddles and the so-called catastrophe points form the critical points of the parameterised critical curves—the curves along which the spatial critical points move in scale space. This enables one to localise these two types of special points relatively easy and automatically. Experimental results concerning the hierarchical representation and pre-segmentation are given and show results that correspond to a fair degree to both the mathematical and the intuitive forecast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnold, Catastrophe Theory, Springer: Berlin, 1984.

    Google Scholar 

  2. V.I. Arnold (Ed.), Dynamical Systems VI: Singularity Theory I, Vol. 6 of Encyclopaedia of Mathematical Sciences, Springer-Verlag: Berlin, 1993.

    Google Scholar 

  3. J. Blom, “Topological and geometrical aspects of image structure,” Ph.D. Thesis, Utrecht University, 1992.

  4. J. Blom, B.M. ter Haar Romeny, A. Bel, and J.J. Koenderink, “Spatial derivatives and the propagation of noise in Gaussian scale-space,” Journal of Visual Communication and Image Representation, Vol. 4, No. 1, pp. 1–13, 1993.

    Google Scholar 

  5. J.W. Bruce and P.J. Giblin, Curves and Singularities, Cambridge University Press: Cambridge, UK, 1984.

    Google Scholar 

  6. C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, and A.C. Evans, “Brainweb: Online interface to a 3D mri simulated brain database,” in NeuroImage—Proceedings of 3rd International Conference on Functional Mapping of the Human Brain, Copenhagen, May 1997, Vol. 5, No. 4, Part 2/4, S425.

  7. D.L. Collins, A.P. Zijdenbos, V. Kollokian, J.G. Sled, N.J. Kabani, C.J. Holmes, and A.C. Evans, “Design and construction of a realistic digital brain phantom,” IEEE Transactions on Medical Imaging, Vol. 17, No. 3, pp. 463–468, 1998.

    Google Scholar 

  8. J. Damon, “Local Morse theory for solutions to the heat equation and Gaussian blurring,” Journal of Differential Equations, Vol. 115, No. 2, pp. 386–401, 1995.

    Google Scholar 

  9. J. Damon, “Generic properties of solutions to partial differential equations,” Arch. Rat. Mech. Anal., pp. 353–403, 1997.

  10. J. Damon, “Local Morse theory for Gaussian blurred functions,” in Gaussian Scale-Space Theory, 2nd edn., Vol. 8 of Computational Imaging and Vision Series, J. Sporring et al. (Eds.), Kluwer: Dordrecht, 1997, pp. 147–162.

    Google Scholar 

  11. L.M.J. Florack, Image Structure, Vol. 10 of Computational Imaging and Vision Series, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.

    Google Scholar 

  12. L.M.J. Florack and A. Kuijper, “The topological structure of scale-space images,” Journal of Mathematical Imaging and Vision, Vol. 12, No. 1, pp. 65–80, 2000.

    Google Scholar 

  13. A.T. Fomenko and T.L. Kunii, Topological Modeling for Visualization, Springer-Verlag: Tokyo, 1997.

    Google Scholar 

  14. R. Gilmore, Catastrophe Theory for Scientists and Engineers, Dover, 1993. Originally published by John Wiley & Sons: New York, dy1981.

    Google Scholar 

  15. L.D. Griffin, “Descriptions of image structure,” Ph.D. Thesis, University of London, 1995.

  16. L.D. Griffin and A. Colchester, “Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices,” Image and Vision Computing, Vol. 13, No. 7, pp. 543–557, 1995.

    Google Scholar 

  17. B.M. ter Haar Romeny (Ed.), Geometry-Driven Diffusion in Computer Vision, Vol. 1 of Computational Imaging and Vision Series, Kluwer Academic Publishers: Dordrecht, 1994.

    Google Scholar 

  18. B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and M.A. Viergever (Eds.), Scale-Space Theory in Computer Vision, Proceedings of the First International Conference, Scale-Space'97, Utrecht, The Netherlands, Vol. 1252 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1997.

    Google Scholar 

  19. R.D. Henkel, “Segmentation in scale space,” in Computer Analysis of Images and Patterns, Vol. 970 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1995, pp. 41-48.

    Google Scholar 

  20. T. Iijima, “Basic theory of pattern normalization (for the case of a typical one-dimensional pattern),” Bulletin of the Electrotechnical Laboratory, Vol. 26, pp. 368–388, 1962 (in Japanese).

    Google Scholar 

  21. P. Johansen, “On the classification of toppoints in scale space,” Mathematical Imaging and Vision, Vol. 4, No. 1, pp. 57–67, 1994.

    Google Scholar 

  22. P. Johansen, “Local analysis of image scale space,” in Gaussian Scale-Space Theory, Vol. 8 of Computational Imaging and Vision Series, J. Sporring et al. (Eds.), Kluwer: Dordrecht, 1997, pp. 139–146.

    Google Scholar 

  23. P. Johansen, M. Nielsen, and O.F. Olsen, “Branch points in one-dimensional Gaussian scale space,” Journal of Mathematical Imaging and Vision, Vol. 13, pp. 193–203, 2000.

    Google Scholar 

  24. P. Johansen, S. Skelboe, K. Grue, and J.D. Andersen, “Representing signals by their toppoints in scale space,” in Proceedings of the International Conference on Image Analysis and Pattern Recognition, Paris, France, October 1986, IEEE Computer Society Press, 1986, pp. 215–217.

  25. S. Kalitzin, “Topological numbers and singularities,” in Gaussian Scale-Space Theory, Vol. 8 of Computational Imaging and Vision Series, J. Sporring et al. (Eds.), Kluwer: Dordrecht, 1997, pp. 181–190.

    Google Scholar 

  26. S.N. Kalitzin, B.M. ter Haar Romeny, A.H. Salden, P.F.M. Nacken, and M.A. Viergever, “Topological numbers and singularities in scalar images. Scale-space evolution properties,” Journal of Mathematical Imaging and Vision, Vol. 9, No. 3, pp. 253–296, 1998.

    Google Scholar 

  27. M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision, Vol. 2106 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, 2001.

    Google Scholar 

  28. J.J. Koenderink, “The structure of images,” Biological Cybernetics, Vol. 50, pp. 363–370, 1984.

    Google Scholar 

  29. J.J. Koenderink, “The structure of the visual field,” In The Physics of Structure Formation: Theory and Simulation, Proceedings of an International Symposium, Tubingen, Germany, October 27–November 2 1986, W. Guttinger and G. Dangelmayr (Eds.), Springer-Verlag: Berlin, 1986.

    Google Scholar 

  30. J.J. Koenderink, “A hitherto unnoticed singularity of scale space,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 11, pp. 1222–1224, 1989.

    Google Scholar 

  31. J.J. Koenderink, Solid Shape, MIT Press: Cambridge, MA, 1990.

    Google Scholar 

  32. J.J. Koenderink and A.J. van Doorn, “The structure of two-dimensional scalar fields with applications to vision,” Biological Cybernetics, Vol. 33, pp. 151–158, 1979.

    Google Scholar 

  33. J.J. Koenderink and A.J. van Doorn, “Dynamic shape,” Biological Cybernetics, Vol. 53, pp. 383–396, 1986.

    Google Scholar 

  34. A. Kuijper and L.M.J. Florack, “Calculations on critical points under Gaussian blurring,” in Scale-Space Theories in Computer Vision, Vol. 1682 of Lecture Notes in Computer Science, M., Nielsen et al. (Eds.), Springer-Verlag: Berlin, 1999, pp. 318–329.

    Google Scholar 

  35. A. Kuijper and L.M.J. Florack, “Hierarchical pre-segmentation without prior knowledge,” in Proceedings of the 8th International Conference on Computer Vision,Vancouver, Canada, July 9–12, 2001, pp. 487–493.

  36. R.K.-S. Kwan, A.C. Evans, and G.B. Pike, “An extensible mri simulator for post-processing evaluation,” in Visualization in Biomedical Computing (VBC'96), Vol. 1131 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1996, pp. 135–140.

    Google Scholar 

  37. L.M. Lifshitz and S.M. Pizer, “A multiresolution hierarchical approach to image segmentation based on intensity extrema,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 6, pp. 529–540, 1990.

    Google Scholar 

  38. T. Lindeberg, “On the behaviour in scale-space of local extrema and blobs,” in Theory & Applications of Image Analysis, Vol. 2 of Series in Machine Perception and Artificial Intelligence, P. Johansen and S. Olsen (Eds.), World Scientific: Singapore, 1992, pp. 38–47.

    Google Scholar 

  39. T. Lindeberg, “Scale-space behaviour of local extrema and blobs,” Journal of Mathematical Imaging and Vision, Vol. 1, No. 1, pp. 65–99, 1992.

    Google Scholar 

  40. T. Lindeberg, Scale-Space Theory in Computer Vision, The Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers: Dordrecht, 1994.

    Google Scholar 

  41. M. Loog, J.J. Duistermaat, and L.M.J. Florack, “On the behavior of spatial critical points under Gaussian blurring. A folklore theorem and scale-space constraints,” in Scale-Space and Morphology in Computer Vision, Vol. 2106 of Lecture Notes in Computer Vision, M. Kerckhove (Ed.), Springer-Verlag: Berlin, 2001, pp. 183–192.

    Google Scholar 

  42. Y.-C. Lu, Singularity Theory and an Introduction to Catastrophe Theory, Springer-Verlag: Berlin, 1976.

    Google Scholar 

  43. M. Nielsen, P. Johansen, O.F. Olsen, and J. Weickert (Eds.), Scale-Space Theories in Computer Vision, Vol. 1682 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, 1999.

    Google Scholar 

  44. O.F. Olsen, “Multi-scale watershed segmentation,” in Gaussian Scale-Space Theory, Vol. 8 of Computational Imaging and Vision Series, J. Sporring et al. (Eds.), Kluwer: Dordrecht, 1997, pp. 191–200.

    Google Scholar 

  45. O.F. Olsen and M. Nielsen, “Generic events for the gradient squared with application to multi-scale segmentation,” in Scal-Space Theory in Computer Vision, Vol. 1252 of Lecture Notes in Computer Science, B.M. ter Haar Romeny et al. (Eds.), Springer-Verlag: Berlin, 1997, pp. 101–112.

    Google Scholar 

  46. O.F. Olsen and M. Nielsen, “Multi-scale gradient magnitude watershed segmentation,” in ICIAP'97—9th International Conference on Image Analysis and Processing, Vol. 1310 of Lecture Notes in Computer Science, 1997, pp. 6–13.

  47. N. Otsu, “Mathematical Studies on Feature Extraction in Pattern Recognition,” Ph.D. Thesis, Electronical Laboratory, Ibaraki, Japan, 1981 (in Japanese).

    Google Scholar 

  48. T. Poston and I.N. Stewart, Catastrophe Theory and its Applications, Pitman: London, 1978.

    Google Scholar 

  49. J.H. Rieger, “Generic evolutions of edges on families of diffused greyvalue surfaces,” Journal of Mathematical Imaging and Vision, Vol. 5, pp. 207–217, 1995.

    Google Scholar 

  50. A. Simmons, S.R. Arridge, P.S. Tofts, and G.J. Barker, “Application of the extremum stack to neurological MRI,” IEEE Transactions on Medical Imaging, Vol. 17, No. 3, pp. 371–382, 1998.

    Google Scholar 

  51. J. Sporring, M. Nielsen, L.M.J. Florack, and P. Johansen (Eds.), Gaussian Scale-Space Theory, Vol. 8 of Computational Imaging and Vision Series, 2nd end., Kluwer Academic Publishers: Dordrecht, 1997.

    Google Scholar 

  52. R. Thom, Stabilité Structurelle et Morphogénèse, Benjamin: New York, 1972.

    Google Scholar 

  53. R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley, 1975. Translated by D.H. Fowler.

  54. K.L. Vincken, A.S.E. Koster,and M.A. Viergever,“Probabilistic multiscale image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, pp. 109–120, 1997.

    Google Scholar 

  55. T. Wada and M. Sato, “Scale-space tree and its hierarchy,” in ICPR90, 1990, Vol. II, pp. 103–108.

    Google Scholar 

  56. J.A. Weickert, Anisotropic Diffusion in Image Processing, Teubner: Stuttgart, 1998.

    Google Scholar 

  57. J.A. Weickert, S. Ishikawa, and A. Imiya, “On the history of Gaussian scale-space axiomatics,” in Gaussian Scale-Space Theory, Vol. 8 of Computational Imaging and Vision Series, J. Sporring et al. (Eds.), Kluwer: Dordrecht, 1997, pp. 45–59.

    Google Scholar 

  58. J.A. Weickert, S. Ishikawa, and A. Imiya, “Linear scale-space has first been proposen in Japan,” Journal of Mathematical Imaging and Vision, Vol. 10, No. 3, pp. 237–252, 1999.

    Google Scholar 

  59. A.P. Witkin, “Scale-space filtering,” in Proceedings of the Eighth International Joint Conference on Artificial Intelligence, 1983, pp. 1019–1022.

  60. N. Zhao and T. Iijima, “A theory of feature extraction by the tree of stable view-points,” IECE Japan, Trans. D, Vol. J68-D, pp. 1125–1132, 1985 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijper, A., Florack, L.M. & Viergever, M.A. Scale Space Hierarchy. Journal of Mathematical Imaging and Vision 18, 169–189 (2003). https://doi.org/10.1023/A:1022168617945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022168617945

Navigation