Skip to main content
Log in

Coherent Structures Detected in Atmospheric Boundary-layer Turbulence using Wavelet transforms at Huaihe River Basin, China

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The presence of coherent structures in turbulent shear flows suggests order in apparently random flows. These coherent structures play an important dynamical role in momentum and scalar transport. To develop dynamical models describing the evolution of such motion, it is necessary to detect and isolate the coherent structures from the background fluctuations. In this paper, we decomposed atmospheric turbulence time series into large-scale eddies, which include coherent structures and small eddies, which are stochastic by using Fourier digital filtering. The wavelet energy computed for the three components of the velocity fluctuations in the large-scale eddies appears to have local maximum values at certain time scales, which correspond to the scales or frequencies of coherent structures. We extract coherent signals from large-scale vortices at this scale by inverse wavelet transform formulae. This method provides an objective technique for examining the turbulence signal associated with coherent structures in the atmospheric boundary layer. The average duration of coherent structures in three directions based on Mexican hat wavelets are 33 s, 34 s and 25 s respectively. Symmetric andanti-symmetric wavelet basis functions give almost the same results. The main features of the structures during the day and night have little difference. The dimensionless durations for u, v and w have linear correlations with each other. These relationships are insensitive to the wavelet basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, 'Temperature Ramps in the Atmospheric Surface Layer', J. Atmos. Sci. 36, 99–108.

    Google Scholar 

  • Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J., and Frisch, U.: 1989, 'Wavelet Analysis of Turbulence Reveals the Multifractal Nature of the Richardson Cascade', Nature 338, 51–53.

    Google Scholar 

  • Basdevant, C., Legras, B., Sadourny, R., and Beland, M.: 1981, 'A Study of Barotropic Model Flows: Intermittency, Waves and Predictability', J. Atmos. Sci. 38, 2305–2326.

    Google Scholar 

  • Blackwelder, R. F. and Kapan, R. E.: 1976, 'On theWall Structure of the Turbulent Boundary Layer', J. Fluid Mech. 76, 89–112.

    Google Scholar 

  • Camussi, R. and Guj, G.: 1997, 'Orthonormal Wavelet Decomposition of Turbulent Flow: Intermittency and Coherent Structure', J. Fluid Mech. 348, 177–199.

    Google Scholar 

  • Chen, Hongyan and Du, Jinlin: 1999, 'A Comparison Study on Heat and Moisture Transfer in HUBEX', in Workshop on Meso-Scale Systems in MEIYU/BAIU Front and Hydrological Cycle, Xi'an, China, November 3–9, 1999, GAME/HUBEX PROJECT OFFICE, pp. 106–109.

  • Chen, Hongyan, Hu, Fei., and Zeng, Qingcun: 2000, 'Dealing with Imperfect Data to Improve Estimation Precision of Turbulence Flux', Clim. Environ. Res. 5, 304–311 (in Chinese).

    Google Scholar 

  • Collineau, S. and Brunet, Y.: 1993a, 'Detection of Turbulent Coherent Motion in a Forest Canopy, Part I: Wavelet Analysis', Boundary-Layer Meteorol. 65, 357–379.

    Google Scholar 

  • Collineau, S. and Brunet, Y.: 1993b, 'Detection of Turbulent Coherent Motion in a Forest Canopy, Part II: Time-Scale and Conditional Averages', Boundary-Layer Meteorol. 66, 47–73.

    Google Scholar 

  • Coulter, R. L. and Li, B. L.: 1995, 'A Technique Using the Wavelet Transform to Identify and Isolate Coherent Structure in the Planetary Boundary Layer', in 11th Symposium on Boundary Layers and Turbulence, Charlotte, NC, March 27–31, 1995, American Meteorological Society, 45 Beacon St., Boston, MA, pp. 291–294.

    Google Scholar 

  • Farge, M.: 1992, 'Wavelet Transforms and their Applications to Turbulence', Annu. Rev. Fluid Mech. 24, 395–457.

    Google Scholar 

  • Farge, M., Schneider, K., and Kevlahan, N.: 1999, 'Non-Guassianity and Coherent Vortex Simulation for Two-dimensional Turbulence Using an Adaptive OrthogonalWavelet Basis', Phys. Fluids 11, 2187–2201.

    Google Scholar 

  • Gamage, N. and Hagelberg, C.: 1993, 'Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms', J. Atmos. Sci. 50, 750–756.

    Google Scholar 

  • Gao, W. and Li, B. L.: 1993, 'Wavelet Analysis of Coherent Structures at the Atmosphere-Forest Interface', J. Appl. Meteorol. 32, 1717–1725.

    Google Scholar 

  • Gao, W., Shaw, R. H., and Paw U, K.T.: 1989, 'Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy', Boundary-Layer Meteorol. 47, 349–377.

    Google Scholar 

  • Grossman, A., and Morlet, J.: 1984, 'Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape', SIAM J. Math. Anal. 15, 723–736.

    Google Scholar 

  • Hu, Fei: 1998, 'Atmospheric Boundary Layer Eddy Structure Identification by Orthonormal Wavelet Expansion', Clim. Environ. Res. 3, 97–104 (in Chinese).

    Google Scholar 

  • Hu, Fei, Li, Xin, Chen, Hongyan, and Liu, Gang: 1999, 'Turbulence Characteristics in the Rough Urban Canopy Layer', Clim. Environ. Res. 4, 252–258 (in Chinese).

    Google Scholar 

  • Hussain, A. K. M. F.: 1986, 'Coherent Structures and Turbulence', J. Fluid Mech. 173, 303–356.

    Google Scholar 

  • Jiang, Nan, Wang, Zhendong, and Shu, Wei: 1997, 'The Maximum Energy Criterion for Identifying Burst Events in Wall Turbulence Using Wavelet Analysis', Acta Mech. Sin. 29, 406–412 (in Chinese).

    Google Scholar 

  • Katul, G. G. and Vidakovic, B.: 1996, 'The Partitioning of Attached and Detached Eddy Motion in the Atmospheric Surface Layer Using LorentzWavelet Filtering', Boundary-Layer Meteorol. 77, 153–172.

    Google Scholar 

  • Katul, G. G. and Vidakovic, B.: 1998, 'Identification of Low-Dimensional Energy-Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods', J. Atmos. Sci. 55, 377–389.

    Google Scholar 

  • Kim, J., Moin, P., and Moser, R.: 1987, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Numbers', J. Fluid Mech. 177, 133–166.

    Google Scholar 

  • Kline, S. J., Reynolds, W. X., Schraub, F. A., and Runstadler, P.W.: 1976, 'The Structure of Turbulent Boundary Layers', J. Fluid Mech. 30, 741–773.

    Google Scholar 

  • Lau, K.-M. and Weng, Hengyi: 1995, 'Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing', Bull. Amer. Meteorol. Soc. 76, 2391–2402.

    Google Scholar 

  • Laufer J.: 1975, 'New Trends in Experimental Turbulence Research', Annu. Rev. Fluid Mech. 7, 307–326.

    Google Scholar 

  • Lewalle, J., Delville, J., and Bonnet, J-P.: 2000, 'Decomposition of Mixing Layer Turbulence into Coherent Structures and Background Fluctuations', Flow Turbulence Combustion 64, 301–328.

    Google Scholar 

  • Li, H.: 1998, 'Identification of Coherent Structure in Turbulent Shear Flow with Wavelet Correlation Analysis', J. Fluids Eng. 120, 778–785.

    Google Scholar 

  • Liandrat, J. and Moret-Bailly, F.: 1990, 'The Wavelet Transform: Some Applications to Fluid Dynamics and Turbulence', Eur. J. Mech: B/Fluids 9, 1–19.

    Google Scholar 

  • Lykossov, V. N. and Wamser, C.: 1995, 'Turbulence Intermittency in the Atmospheric Surface Layer over Snow-Covered Sites', Boundary-Layer Meteorol. 72, 393–409.

    Google Scholar 

  • Mahrt, L.: 1991, 'Eddy Asymmetry in the Sheared Heated Boundary Layer', J. Atmos. Sci. 48, 472–492.

    Google Scholar 

  • Mallat, S. and Hwang, W. L.: 1992, 'Singularity Detection and Processing with Wavelets', IEEE Trans. Inform. Theory 38, 617–643.

    Google Scholar 

  • McWilliams, J. C.: 1984, 'The Emergence of Isolated Coherent Vortices in Turbulence Flow',J. Fluid Mech. 146, 21–43.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, The MIT Press, Cambridge, MA, 769 pp.

    Google Scholar 

  • Qian, Minwei and Liu, Shida: 1996, 'Scale Exponents of Atmospheric Turbulence under Different Stratifications', Fractals 4, 45–48.

    Google Scholar 

  • Qiu, J., Paw U, K. T., and Shaw, R. H.: 1995, 'Pseudo-Wavelet Analysis of Turbulence Patterns in Three Vegetation Layers', Boundary-Layer Meteorol. 72, 177–204.

    Google Scholar 

  • Robinson, S. K.: 1991, 'Coherent Motions in the Turbulence Boundary Layer', Annu. Rev. Fluid Mech. 23, 601–639.

    Google Scholar 

  • Staszewski, W. J., Worden, K., and Rees, J. M.: 1998, 'Analysis of Wind Fluctuations Using the Orthogonal Wavelet Transform', Appl. Sci. Res. 59, 205–218.

    Google Scholar 

  • Szilagyi, J., Katul, G. G., Parlange, M. B., Albertson, J. D., and Cahill, A. T.: 1996, 'The Local Effect of Intermittency on the Inertial Subrange Energy Spectrum of the Atmospheric Surface Layer', Boundary-Layer Meteorol. 79, 35–50.

    Google Scholar 

  • Turner, B. J. and Leclerc, M. Y.: 1994, 'Conditional Sampling of Coherent Structures in Atmospheric Turbulence Using the Wavelet Transform', J. Atmos. Oceanic Tech. 11, 205–209.

    Google Scholar 

  • Turner, B. J., Leclerc, M. Y., Gauthier, M., Moore, K. E., and Fitzjarrald, D. R.: 1994, 'Identification of Turbulence Structures above a Forest Canopy Using a Wavelet Transform', J. Geophys. Res. 99, 1919–1926.

    Google Scholar 

  • Van Atta, C. W.: 1994, 'Shear Flow (Turbulent)', in P. Tabeling and O. Cardoso (eds.), Turbulence: A tentative Dictionary, Plenum Press, New York, pp.97–100.

    Google Scholar 

  • Wang, Jiansheng, Shang, Xiaodong, and Shu, Wei: 1997, 'The Three-Part Decomposition of Turbulent Signal', Acta Mech. Sin. 29, 519–524 (in Chinese).

    Google Scholar 

  • Wang, Jiansheng, Zhang, Jinzhong, and Shu, Wei: 1995, 'The Digital Filter Method of Extracting the Coherent Structure in Wall Turbulence', Acta Mech. Sin. 27, 398–404 (in Chinese).

    Google Scholar 

  • Weng, Hengyi and Lau, K.-M.: 1994, 'Wavelets, Period-Doubling and Time-Frequency Localization with Application to Organization of Convection over the TropicalWestern Pacific', J. Atmos. Sci. 51, 2523–2541.

    Google Scholar 

  • Wilczak, J. M.: 1984, 'Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part I: Velocity and Temperature Structures', J. Atmos. Sci. 41, 3537–3550.

    Google Scholar 

  • Wright, W. B., Budakiam, R., Pine, D. J., and Putterman, S. J.: 1997,' Imaging of Intermittency in Ripple-Wave Turbulence', Science 278, 1609–1612.

    Google Scholar 

  • Yamada, M., and Ohkitani, K.: 1990,' Orthonormal Wavelet Expansion and its Application to Turbulence', Prog. Theor. Phys. 83, 819–823.

    Google Scholar 

  • Zhang, Jinzhong and Shu, Wei: 1993, 'Measurements of the Turbulent Boundary Layer on a Flat Plate by a 3–Component Hot-Wire Probe', J. Exp. Mech. 8, 287–295 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Hu, F. Coherent Structures Detected in Atmospheric Boundary-layer Turbulence using Wavelet transforms at Huaihe River Basin, China. Boundary-Layer Meteorology 107, 429–444 (2003). https://doi.org/10.1023/A:1022162030155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022162030155

Navigation