Skip to main content
Log in

Experimental Investigation and Numerical Simulation of an Expanding Multifront Detonation Wave

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Results of experimental investigations of an expanding multifront detonation wave are presented. Two stages of spontaneous formation of new disturbances and transverse waves on the expanding detonation‐wave front are observed. The main mechanisms of re‐initiation of detonation waves are discussed. Two‐dimensional numerical simulation of the dynamics of a multifront detonation wave in a linearly expanding channel is performed. The effect of spontaneous formation of new disturbances and new transverse waves is confirmed by computations, and the main mechanism of multiplication of transverse waves is the instability of detonation‐wave‐front elements at the stage they cease to be in the overdriven state and are attenuated during expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Vasil'ev, Transcritical Gas-Detonation Regimes [in Russian], Novosibirsk (1995).

  2. A. A. Vasil'ev, “Diffraction of multifront detonation,” Combust. Expl. Shock Waves, 24, No. 1, 92–98 (1988).

    Google Scholar 

  3. A. A. Vasil'ev, “Re-initiation upon diffraction of multifront detonation,” Khim. Fiz., 16, No. 9, 107–112 (1997).

    Google Scholar 

  4. A. A. Vasil'ev, “Critical initiation of a gas detonation,” Combust. Expl. Shock Waves, 19, No. 1, 1115–123 (1983).

    Google Scholar 

  5. Ya. K. Troshin and K. I. Shchelkin, Combustion Gas Dynamics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).

    Google Scholar 

  6. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  7. V. A. Subbotin, “Collision of transverse detonation waves in gases,” Combust. Expl. Shock Waves, 11, No. 3, 411–414 (1975).

    Google Scholar 

  8. V. A. Subbotin and O. B. Mosunov, “Explosion initiation by mixing of reaction products with an unburned gas,” Dokl. Ross. Akad. Nauk, 328, No. 3, 352–354 (1993).

    Google Scholar 

  9. B. E. Gel'fand, A. N. Polenov, S. M. Frolov, and S. A. Tsyganov, “Occurrence of detonation in a nonuniformly heated gas mixture,” Combust. Expl. Shock Waves, 21, No. 4, 488–492 (1985).

    Google Scholar 

  10. R. Knystautas, J. H. S. Lee, I. O. Moen, and H. G. Wagner, “Direct initiation of spherical detonation by a hot turbulent gas jet,” in: Proc. 17th Symp. (Int.) on Combustion, Pittsburgh (1979), pp. 1235–1245.

  11. V. V. Mitrofanov and R. I. Soloukhin, “Diffraction of a multifront detonation wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).

    Google Scholar 

  12. R. Knystautas, J. H. S. Lee, and C. M. Guirao, “The critical tube diameter for detonation failure in hydrocarbon-air mixtures,” Combust. Flame, 48, 63–83 (1982).

    Google Scholar 

  13. A. A. Vasil'ev, A. I. Valishev, V. A. Vasil'ev, and L. V. Panfilova, “Combustion and detonation characteristics of hydrazine and its methyl derivatives,” Combust. Expl. Shock Waves, 36, No. 3, 358–373 (2000).

    Google Scholar 

  14. E. Pantow, M. Fischer, and T. Kratzel, “Detonation front structures in hydrogen combustibles,” in: Conference Proc. 16-ICDERS, Univ. of Mining and Metallurgy AGH, Cracow, Poland (1997), pp. 377–380.

  15. A. V. Trotsyuk, “Numerical simulation of the structure of two-dimensional gaseous detonation of an H2—O2#x2014;Ar mixture,” Combust. Expl. Shock Waves, 35, No. 5, 549–558 (1999).

    Google Scholar 

  16. D. A. Jones, M. Sichel, and E. S. Oran, “Reignition of detonations by reected shocks,” Shock Waves, 5, 47–57 (1995).

    Google Scholar 

  17. E. Pantow, M. Fischer, and T. Kratzel, “Quenching and re-initiation of detonation waves. Modeling and simulation of the phenomena and application for improved detonation arrester design,” in: J.-A. Desideri, C. Hirsch, et al. (eds.), Proc. 3rd ECCOMAS Computational Fluid Dynamics Conference, Paris (1996), pp. 388–393.

  18. M. Fisher, E. Pantow, and T. Kratzel, “Propagation, decay and re-ignition of detonations in technical structures,” in: G. Roy, S. Frolov, K. Kailasanath, and N. Smirnov (eds.), Gaseous and Heterogeneous Detonations. Science to Applications, ENAS Publishers, Moscow (1999), pp. 197–212.

    Google Scholar 

  19. B. Khasainov, C. Priault, H.-N. Presles, and D. Desbordes, “On the mechanism of transition of self-sustained detonation from a tube to a half-space through an annular orifice with central obstacle,” in: 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (July 29–August 3, 2001, Seattle), CD ISBN 0-9711740-0-8, No. 096, Univ. Washington, (2001).

  20. A. A. Vasil'ev and A. V. Trotsyuk, “Self-organization of multifront structure in expanding detonation wave,” ibid., No. 001.

  21. T. Fujiwara, A. Takasu, and T. Miyasaka, “Detonation Propagation in Variable Cross Section Channels,” ibid., No. 108.

  22. V. A. Levin and V. P. Korobeinikov, “Strong explosion in a combustible gas mixture,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 48–51 (1969).

  23. D. R. White, “Density induction times in very lean mixtures of D2, H2, C2H2, and C2H4 with O2,” in: 11th Symp. (Int.) on Combustion, Berkeley (1966), pp. 147–154.

  24. Yu. A. Nikolaev, “Model of the kinetics of chemical reactions at high temperatures,” Combust. Expl. Shock Waves, 14, No. 4, 468–471 (1978).

    Google Scholar 

  25. Yu. A. Nikolaev and D. V. Zak, “Agreement of models of chemical reactions in gases with the second law of thermodynamics,” Combust. Expl. Shock Waves, 24, No. 4, 461–463 (1988).

    Google Scholar 

  26. S. K. Godunov (ed.), Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  27. Yu. A. Nikolaev and P. A. Fomin, “Analysis of equilibrium flows of chemically reacting gases,” Combust. Expl. Shock Waves, 18, No. 1, 53–58 (1982).

    Google Scholar 

  28. Yu. A. Nikolaev and P. A. Fomin, “Approximate equation of kinetics in heterogeneous systems of the gas-condensed-phase type,” Combust. Expl. Shock Waves, 19, No. 6, 731–736 (1983).

    Google Scholar 

  29. S. Yamamoto and H. Daiguji, “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier—Stokes equations,” Comput. Fluids, 22, Nos. 2/3, 259–270 (1993).

    Google Scholar 

  30. H. Daiguji, X. Yuan, and S. Yamamoto, “Stabilization of higher-order high resolution schemes for the compressible Navier—Stokes equation,” Int. J. Numer. Meth. Heat Fluid Flow, 7, Nos. 2/3, 250–274 (1997).

    Google Scholar 

  31. S.-Y. Lin and Y.-S. Chin, “Comparison of higher resolution Euler schemes for aeroacoustic computations,” AIAA J., 33, No. 2, 237–245 (1995).

    Google Scholar 

  32. S. R. Chakravarthy and S. Osher, “A new class of high accuracy TVD schemes for hyperbolic conservation laws,” AIAA Paper No. 85-0363 (1985).

  33. P. Batten, M. A. Leschziner, and U. C. Goldberg, “Average-state Jacobians and implicit methods for compressible viscous and turbulent flows,” J. Comput. Phys., 137, 38–78 (1997).

    Google Scholar 

  34. F. Coquel and B. Perthame, “Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics,” SIAM J. Numer. Anal., 35, No. 6, 2223–2249 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil'ev, A.A., Trotsyuk, A.V. Experimental Investigation and Numerical Simulation of an Expanding Multifront Detonation Wave. Combustion, Explosion, and Shock Waves 39, 80–90 (2003). https://doi.org/10.1023/A:1022157504636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022157504636

Navigation