Skip to main content
Log in

Mathematical Model for Calculating the Heat-Protection Properties of the Composite Coating “Ceramic Microspheres–Binder”

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A mathematical model which makes it possible to calculate the heat-protection properties of the composite coating “ceramic microspheres–binder” is proposed. The model takes account of the optical and thermophysical properties of the components and the optical properties of a substrate. It is shown that the decrease in the heat loss due to suppression of its radiative component by the coating in question can reach more than 50%. Under certain conditions, the heat-insulation effect can be absent or even inverted, i.e., the presence of the coating is capable of resulting in an increase in the heat flux from the surface being protected. Comparison of the data of the performed full-scale experiment and the calculations based on the proposed model showed that the latter adequately reflects the actual process of heat transfer and can be used for calculating the heat-protection properties of coatings representing a compound of a binder and ceramic microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kreith and W. Z. Black, Basic Heat Transfer [Russian translation], Moscow (1983).

  2. O. G. Martynenko and Yu. A. Sokovishin, Free-Convective Heat Transfer [in Russian], Minsk (1982).

  3. A. V. Luikov, Heat and Mass Transfer [in Russian], Moscow (1978).

  4. K. S. Adzerikho, E. F. Nogotov, and V. P. Trofimov, Radiative Heat Transfer in Two-Phase Media [in Russian], Minsk (1987).

  5. W. A. Fiveland, J. Heat Transfer, 106, 699–706 (1984).

    Google Scholar 

  6. M. L. German, Influence of the Optical Properties of Two-Phase Medium and a Boundary Surface on Radiative Heat Transfer in Furnace Chambers, Candidate's Dissertation (in Physics and Mathematics), Minsk (1993).

  7. V. V. Budov, Steklo Keramika, No. 7, 7–11 (1994).

  8. A. G. Blokh, Yu. A. Zhuravlev, and L. N. Ryzhkov, Radiative Heat Transfer. Handbook [in Russian], Moscow (1991).

  9. T. Shih, Numerical Heat Transfer [Russian translation], Moscow (1988).

  10. E. F. Nogotov, Application of Numerical Heat Transfer, McGraw-Hill, New York (1978).

    Google Scholar 

  11. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer [Russian translation], Moscow (1975), pp. 795–804.

  12. M. Menguc and R. Viskanta, JQSRT, 35, 533–549 (1985).

    Google Scholar 

  13. S. Maruyama and T. Aihara, in: Proc. 1st Int. Symp. on Radiation Transfer, Kusadasi, Turkey (1995), pp. 153–167.

    Google Scholar 

  14. H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967).

    Google Scholar 

  15. S. Chandrasekhar, Radiative Transfer, New York (1960).

  16. W. A. Fiveland, J. Heat Transfer, 109, 809–812 (1987).

    Google Scholar 

  17. J. S. Truelove, JQSRT, 39, 27–31 (1988).

    Google Scholar 

  18. M. L. German, V. P. Nekrasov, and E. F. Nogotov, Dokl. Akad. Nauk Belarusi, 40, No. 3, 122–126 (1996).

    Google Scholar 

  19. E. A. German, M. L. German, V. P. Nekrasov, and E. F. Nogotov, Inzh.-Fiz. Zh., 69, No. 6, 1014–1020 (1996).

    Google Scholar 

  20. M. L. German, V. P. Nekrasov, and E. F. Nogotov, Dokl. Akad. Nauk Belarusi, 42, No. 1, 67–73 (1998).

    Google Scholar 

  21. M. L. German, P. M. Kolesnikov, and E. F. Nogotov, in: Proc. Int. Conf. "Thermal Physics-98" [in Russian], Obninsk (1998), pp. 301–308.

  22. K. N. Liou, An Introduction to Atmospheric Radiation [Russian translation], Leningrad (1984).

  23. O. G. Martynenko, M. L. German, V. P. Nekrasov, and E. F. Nogotov, Int. J. Heat Mass Transfer, 41, No. 17, 2697–2704 (1998).

    Google Scholar 

  24. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Engineering Media [in Russian], Leningrad (1984).

  25. H. C. van de Hulst, Light Scattering by Small Particles [Russian translation], Moscow (1961).

  26. A. P. Ivanov and V. G. Danilyuk, Opt. Spektrosk., 42, No. 4, 739–746 (1977).

    Google Scholar 

  27. T. P. Ryzhkova and L. N. Ryzhkov, Prom. Teploenerget., 1, No. 3, 26–34 (1983).

    Google Scholar 

  28. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions [in Russian], Moscow (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, M.L., Grinchuk, P.S. Mathematical Model for Calculating the Heat-Protection Properties of the Composite Coating “Ceramic Microspheres–Binder”. Journal of Engineering Physics and Thermophysics 75, 1301–1313 (2002). https://doi.org/10.1023/A:1022150523156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022150523156

Keywords

Navigation