Advertisement

Educational Psychology Review

, Volume 10, Issue 3, pp 355–373 | Cite as

The Biologizing of Cognition, Development, and Education: Approach with Cautious Enthusiasm

  • Rhonda Douglas Brown
  • David F. Bjorklund
Article

Abstract

In our commentary, we propose the current research from the field of developmental neuroscience can be incorporated within the theoretical perspectives advocated by evolutionary psychologists and advocates of the developmental systems approach. We then describe research on memory and the relationship between spatial-temporal reasoning and mathematical abilities as examples of literatures that have benefitted from the neuroscience approach. We conclude by expressing enthusiasm for the recent neuroscience findings, but caution that developmental neuroscience's focus on infancy and preschool children should not result in an overemphasis on early development and education at the expense of later development and education.

cognitive neuroscience spatial-temporal reasoning mathematical abilities memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bjorklund, D. F. (1997a). In search of a metatheory for cognitive development (or, Piaget's dead and I don't feel so good myself). Child Devel. 68: 142–146.Google Scholar
  2. Bjorklund, D. F. (1997b). The role of immaturity in human development. Psychol. Bull. 122: 153–169.Google Scholar
  3. Bjorklund, D. F., and Green, B. L. (1992). The adaptive nature of cognitive immaturity. Am. Psychol. 47: 46–54.Google Scholar
  4. Bjorklund, D. F., and Kipp, K. (1996). Parental investment theory and gender differences in the evolution of inhibition mechanisms. Psychol. Bull. 120: 163–188.Google Scholar
  5. Bjorklund, D. F., and Schwartz, R. (1996). The adaptive nature of developmental immaturity: Implications for language acquisition and language disabilities. In Smith, M., and Damico, J. (eds.), Childhood Language Disorders, Thieme Medical Publishers, New York, pp. 17–40.Google Scholar
  6. Bronfenbrenner, U. (1979). The Ecology of Human Development: Experiments by Nature and Design, Harvard University Press, Cambridge, MA.Google Scholar
  7. Buss, D. M. (1995). Evolutionary psychology. Psychol. Inq. 6: 1–30.Google Scholar
  8. Ceci, S. J., Crotteau-Huffman, M., Smith, E., and Loftus, E. F. (1994). Repeatedly thinking about non-events. Conscious. Cognit. 3: 388–407.Google Scholar
  9. Ceci, S. J., Loftus, E. F., Leichtman, M., and Bruck, M. (1994). The role of source misattributions in the creation of false beliefs among preschoolers. Int. J. Clin. Exp. Hypn. 62: 304–320.Google Scholar
  10. Elkind, D. (1987a). Early childhood education on its own terms. In Kagan, S. L., and Zigler, E. F. (eds.), Early Schooling: The National Debate, Yale University Press, New Haven, CT.Google Scholar
  11. Elkind, D. (1987b). The Miseducation of Children: Superkids at Risk, Knopf, New York.Google Scholar
  12. Gardiner, M. F., Fox, A., Knowles, F., and Jeffrey, D. (1996). Learning improved by arts training. Nature 381: 284.Google Scholar
  13. Geary, D. C. (1996). Sexual selection and sex differences in mathematical abilities. Behav. Brain Sci. 19: 229–284.Google Scholar
  14. Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Devel. Psychol. 27: 4–13.Google Scholar
  15. Gottlieb, G., Wahlsten, D., and Lickliter, R. (1997). The significance of biology for human development: A developmental psychobiological systems view. In Lerner, R. M. (volume ed.), Theoretical Models of Human Development (Vol. 1); Damon, W. (general ed.), Handbook of Child Psychology, Wiley, New York.Google Scholar
  16. Gould, S. J., and Vrba, E. S. (1982). Exaptation — A missing term in the science of form. Paleobiology 8: 4–15.Google Scholar
  17. Hamilton, W. D. (1964). The genetical evolution of social behavior, I and II. J. Theoret. Biol. 7: 1–52.Google Scholar
  18. Hyman, I. E., Husband, T. H., and Billings, F. J. (1995). False memories of childhood experiences. Appl. Cognit. Psychol. 9: 181–197.Google Scholar
  19. Hyson, M. C., Hirsh-Pasek, K., and Rescorla, L. (1990). Academic environments in preschool: Challenge or pressure? Early Educ. Devel. 1: 401–423.Google Scholar
  20. Leng, X., and Shaw, G. L. (1991). Toward a neural theory of higher brain function using music as a window. Concepts Neurosci. 2: 229–258.Google Scholar
  21. Lerner, R. M., and Kaufman, M. B. (1985). The concept of development in contextualism. Devel. Rev. 5: 309–333.Google Scholar
  22. Loftus, E. F., and Pickrell, J. E. (1995). The formation of false memories. Psychiat. Ann. 25: 720–725.Google Scholar
  23. Mithen, S. (1996). The Prehistory of the Mind: The Cognitive Origins of Art, Religion and Science, Thames and Hudson, London.Google Scholar
  24. Nelson, C. A., and Bloom, F. E. (1997). Child development and neuroscience. Child Devel. 68: 970–987.Google Scholar
  25. Nelson, K. (1993). The psychological and social origins of autobiographical memory. Psychol. Sci. 4: 7–14.Google Scholar
  26. Oppenheim, R. W. (1981). Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior. In Connolly, K. J., and Prechtl, H. F. R. (eds.), Maturation and Development: Biological and Psychological Perspectives, International Medical Publications, Philadelphia.Google Scholar
  27. Rauscher, F. H., Shaw, G. L., and Ky, K. N. (1993). Music and spatial task performance. Nature 365: 611.Google Scholar
  28. Rauscher, F. H., Shaw, G. L., Levine, L. J., and Ky, K. N. (August 1994). Music and Spatial Task Performance: A Causal Relationship. Paper presented at Meeting of the American Psychological Association, Los Angeles.Google Scholar
  29. Rauscher, F. H., Shaw, G. L., Levine, L. J., Wright, E. L., Dennis, W. R., and Newcomb, R. L. (1997). Music training causes long-term enhancement of preschool children's spatial-temporal reasoning. Neurol. Res. 19: 2–8.Google Scholar
  30. Rozin, P. (1976). The evolution of intelligence and access to the cognitive unconscious. Prog. Psychobiol. Physiol. Psychol. 6: 245–280.Google Scholar
  31. Sameroff, A. J. (1983). Developmental systems: Contexts and evolution. In Kessen, W. (volume ed.), History, Theory, and Methods (Vol. 1); Mussen, P. H. (general ed.), Handbook of Child Psychology, Wiley, New York, pp. 237–294.Google Scholar
  32. Schacter, D. L., Kagan, J., and Leichtman, M. D. (1995). True and false memories in children and adults: A cognitive neuroscience perspective. Psychol. Pub. Policy, Law 1: 411–428.Google Scholar
  33. Schacter, D. L., Koutstaal, W., and Norman, K. A. (1996). Can cognitive neuroscience illuminate the nature of traumatic childhood memories? Curr. Opin. Neurobiol. 6: 207–214.Google Scholar
  34. Sherry, D. F., and Schacter, D. L (1987). The evolution of multiple memory systems. Psychol. Rev. 94: 439–454.Google Scholar
  35. Tooby, J., and Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J. H., Cosmides, L., and Tooby, J. (eds.), The Adapted Mind: Evolutionary Psychology and the Generation of Culture, Oxford University Press, New York.Google Scholar
  36. Tulving, E. (1991). Concepts of human memory. In Squire, L. R., Weinberger, N. M., Lynch, G., and McGaugh, J. L. (eds.), Memory: Organization and Locus of Change, Oxford University Press, Oxford, pp. 3–34.Google Scholar
  37. Tulving, E., Kapur, S., Markowitsch, H. J., Craik, F. I. M., Habib, R., and Houle, S. (1994). Neuroanatomical correlates of retrieval in episodic memory: Auditory sentence recognition. Meet. Natl. Acad. Sci. 91: 2012–2015.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Rhonda Douglas Brown
    • 1
  • David F. Bjorklund
    • 1
  1. 1.Department of PsychologyFlorida Atlantic UniversityBoca Raton

Personalised recommendations