Skip to main content
Log in

Ising Field Theory in a Magnetic Field: Analytic Properties of the Free Energy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the analytic properties of the scaling function associated with the 2D Ising model free energy in the critical domain TT c , H→0. The analysis is based on numerical data obtained through the Truncated Free Fermion Space Approach. We determine the discontinuities across the Yang–Lee and Langer branch cuts. We confirm the standard analyticity assumptions and propose “extended analyticity;” roughly speaking, the latter states that the Yang–Lee branching point is the nearest singularity under Langer's branch cut. We support the extended analyticity by evaluating numerically the associated “extended dispersion relation.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Caselle and M. Hasenbusch, Critical amplitudes and mass spectrum of the 2D Ising model in a magnetic field, Nucl. Phys. B 579:667–703 (2000), (preprint hep-th/9911216).

    Google Scholar 

  2. M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, Irrelevant Operators in the Two-Dimensional Ising Model, DFTT 17/2001, DESY 01–074, IFUP-TH 99/2001, Roma1–1963/01, June 2001 (preprint cond-mat/0106372).

  3. M. Caselle, P. Grinza, and N. Magnoli, Correction induced by irrelevant operators in the correlators of the 2-d Ising model in a magnetic field, J. Phys. A 34:8733–8750 (2001) (preprint hep-th/0103263).

    Google Scholar 

  4. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65:117–149 (1944).

    Google Scholar 

  5. B. Kaufman, Crystal statistics. II. Partition function evaluated by spinor analysis, Phys. Rev. 76:1232–1243 (1949).

    Google Scholar 

  6. C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev. 85:808–816 (1952).

    Google Scholar 

  7. E. Barouch, B. M. McCoy, and T. T. Wu, Zero-field susceptibility of the two-dimensional Ising model near Tc, Phys. Rev. Lett. 31:1409–1411 (1973).

    Google Scholar 

  8. T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13:316–374 (1976).

    Google Scholar 

  9. A. B. Zamolodchikov, Integrals of motion and S-matrix of the (scaled) T=Tc Ising model with magnetic field, Int. J. Mod. Phys. A 4:4235–4248 (1989).

    Google Scholar 

  10. V. A. Fateev, The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett. B 324:45–51 (1994).

    Google Scholar 

  11. G. Delfino, Universal amplitude ratios in the two-dimensional Ising model, Phys. Lett. B 419:291–295 (1998), (preprint hep-th/9710019).

    Google Scholar 

  12. J. W. Essam and D. L. Hunter, Classical behaviour of the Ising model above and below the critical temperature, J. Phys. C 1:392–407 (1968).

    Google Scholar 

  13. S. Zinn, S.-N. Lai, and M. E. Fisher, Renormalized coupling constants and related amplitude ratios for Ising systems, Phys. Rev. E 54:1176–1182 (1996).

    Google Scholar 

  14. M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, High-precision estimate of g4 in the 2D Ising model, J. Phys. A 33:8171–8180 (2000), (preprint hep-th/0003049).

    Google Scholar 

  15. M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, The critical equation of state of the 2D Ising model, J. Phys. A 34:2923–2948 (2001), (preprint cond-mat/0011305).

    Google Scholar 

  16. V. P. Yurov and Al. B. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod.Phys. A 5:3221–3245 (1990).

    Google Scholar 

  17. V. P. Yurov and Al. B. Zamolodchikov, Truncated-fermionic-space approach to the critical 2D Ising model with magnetic field, Int. J. Mod. Phys. A 6:4557–4578 (1991).

    Google Scholar 

  18. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev. 87:404–409 (1952).

    Google Scholar 

  19. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model, Phys. Rev. 87:410–419 (1952).

    Google Scholar 

  20. J. S. Langer, Theory of the condensation point, Ann. Phys. 41:108–157 (1967)

    Google Scholar 

  21. J. S. LangerAnn. Phys. 281:941–990 (2000).

    Google Scholar 

  22. M. B. Voloshin, Decay of a metastable vacuum in (1+1) dimensions, Yad. Fiz. 42:1017–1026 (1985)

    Google Scholar 

  23. M. B. VoloshinSov. J. Nucl. Phys. 42:644–649 (1985).

    Google Scholar 

  24. T. T. Wu and B. M. McCoy, The Two-Dimensional Ising Model (Harvard University Press, 1973).

  25. G. Mussardo, Off-critical statistical models: factorized scattering theories and bootstrap program, Phys. Rep. 218:215–379 (1992).

    Google Scholar 

  26. B. Berg, M. Karowski, and P. Weisz, Construction of Green's functions from an exact S matrix, Phys. Rev. D 19:2477–2479 (1979).

    Google Scholar 

  27. L. P. Kadanoff and H. Ceva, Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B 3:3918–3939 (1971).

    Google Scholar 

  28. S. Sachdev, Universal, finite temperature, crossover functions of the quantum transition in the Ising chain in a transverse field, Nucl. Phys. B 464:576–595 (1996), (preprint cond-mat/9509147).

    Google Scholar 

  29. A. I. Bugrij, The Correlation Function in Two Dimensional Ising Model on the Finite Size Latice. I. (preprint hep-th/0011104)

  30. A. I. BugrijForm Factor Representation of the Correlation Function of the Two Dimensional Ising Model on a Cylinder (preprint hep-th/0107117).

  31. J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, and P. Weisz, The intrinsic coupling in integrable quantum field theories, Nucl. Phys. B 583:614–670 (2000), (preprint hep-th/0001097).

    Google Scholar 

  32. M. E. Fisher, Yang-Lee edge singularitry and φ3 field theory, Phys. Rev. Lett. 40:1610–1613 (1978).

    Google Scholar 

  33. J. L. Cardy, Conformal invariance and the Yang-Lee edge singularity in two dimensions, Phys. Rev. Lett. 54:1354–1356 (1985).

    Google Scholar 

  34. Al. B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state Potts and Lee-Yang models, Nucl. Phys. B 342:695–720 (1990).

    Google Scholar 

  35. A. F. Andreev, Singularity of thermodynamic quantities at a first order phase transition point, Sov. Phys. JETP 18:1415–1416 (1964).

    Google Scholar 

  36. M. E. Fisher, University of Colorado, Boulder, Summer School Lectures, 1964 (University of Colorado Press, Boulder, 1965)

    Google Scholar 

  37. M. E. FisherProc. Centennial Conf. Phase Transformations (Univ. Kentucky, 1965).

  38. N. J. Günther, D. A. Nicole, and D. J. Wallace, Goldstone model in vacuum decay and first-order phase transitions, J. Phys. A 13:1755–1767 (1980).

    Google Scholar 

  39. M. J. Lowe and D. J. Wallace, Instantons and the Ising model below Tc, J. Phys. A 13:L381-L385 (1980).

    Google Scholar 

  40. C. K. Harris, The Ising model below Tc: calculation of non-universal amplitudes using a primitive droplet model, J. Phys. A 17:L143-L419 (1984).

    Google Scholar 

  41. B. M. McCoy and T. T. Wu, Two-dimensional Ising model near Tc: Approximation for small magnetic field, Phys. Rev. B 18:4886–4901 (1978).

    Google Scholar 

  42. J. S. Langer, Statistical theory of the decay of metastable states, Annals Phys. 54:258–275 (1969).

    Google Scholar 

  43. I. Yu. Kobzarev, L. B. Okun, and M. B. Voloshin, Bubbles in metastable vacuum, Yad. Fiz. 20:1229–1234 (1974)

    Google Scholar 

  44. I. Yu. Kobzarev, L. B. Okun, and M. B. Voloshin, Bubbles in metastable vacuumSov. J. Nucl. Phys. 20:644–646 (1975).

    Google Scholar 

  45. S. Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev. D 15:2929–2936 (1977).

    Google Scholar 

  46. C. G. Callan and S. Coleman, Fate of the false vacuum. II. First quantum corrections, Phys. Rev. D 16:1762–1768 (1977).

    Google Scholar 

  47. S. B. Rutkevich, Decay of the metastable phase in d=1 and d=2 Ising models, Phys. Rev. B 60:14525–14528 (1999), (preprint cond-mat/9904059).

    Google Scholar 

  48. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516:652–674 (1998), (preprint hep-th/9709034).

    Google Scholar 

  49. G. Delfino and G. Mussardo, The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T=Tc, Nucl. Phys. B 455:724–758 (1995), (preprint hep-th/9507010).

    Google Scholar 

  50. J. L. Cardy and G. Mussardo, S-matrix of the Yang-Lee edge singularity in two dimensions, Phys. Lett. B 225:275–278 (1989).

    Google Scholar 

  51. Al. B. Zamolodchikov, Thermodynamic Bethe ansatz for RSOS scattering theories, Nucl. Phys. B 358:497–523 (1991).

    Google Scholar 

  52. Al. B. Zamolodchikov, Mass scale in the Sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10:1125–1150 (1995).

    Google Scholar 

  53. B. M. McCoy and T. T. Wu, Two-dimensional Ising field theory in a magnetic field: Breakup of the cut in the two-point function, Phys. Rev. D 18:1259–1267 (1978).

    Google Scholar 

  54. G. Delfino, G. Mussardo, and P. Simonetti, Non-integrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B 473:469–508 (1996), (preprint hep-th/9603011).

    Google Scholar 

  55. V. Privman and L. S. Shulman, Analytic continuation at first-order phase transitions, J. Stat. Phys. 29:205–229 (1982).

    Google Scholar 

  56. J. S. Langer, Metastable states, Physica 73:61–72 (1974).

    Google Scholar 

  57. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, 1989).

  58. B. G. Nickel, On the singularity structure of the 2D Ising model susceptibility, J. Phys. A 32:3889–3906 (1999); Addendum to "On the singularity structure of the 2D Ising model susceptibility," J. Phys. A 33:1693–1711 (2000).

    Google Scholar 

  59. W. P. Orrick, B. G. Nickel, A. J. Guttmann, and J. H. H. Perk, Critical behaviour of the two-dimensional Ising susceptibility, Phys. Rev. Lett. 86:4120–4123 (2001), (preprint cond-mat/0009059).

    Google Scholar 

  60. W. P. Orrick, B. G. Nickel, A. J. Guttmann, and J. H. H. Perk, The susceptibility of the square lattice Ising model: New developments, J. Stat. Phys. 102:795–841 (2001), (preprint cond-mat/0103074).

    Google Scholar 

  61. P. Fonseca, S. Lukyanov, and A. Zamolodchikov, to be published.

  62. A. LeClair, Spectrum generating affine Lie algebras in massive field theory, Nucl. Phys. B 415:734–780 (1994), (preprint hep-th/9305110).

    Google Scholar 

  63. V. P. Yurov and Al. B. Zamolodchikov, Correlation functions of integrable 2D models of relativistic field theory; Ising model, Int. J. Mod. Phys. A 6:3419–3440 (1991).

    Google Scholar 

  64. G. von Gehlen, Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field, J. Phys. A 24:5371–5400 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, P., Zamolodchikov, A. Ising Field Theory in a Magnetic Field: Analytic Properties of the Free Energy. Journal of Statistical Physics 110, 527–590 (2003). https://doi.org/10.1023/A:1022147532606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022147532606

Navigation