Skip to main content
Log in

Methodology of Analytic and Computational Studies on Quantum Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The concept of “separation of procedures” and the ST-transformation are briefly reviewed together with the equivalence theorem that a d-dimensional quantum system with finite-range interactions is equivalent to the corresponding (d+1)-dimentional classical system with finite-range interactions. This theorem yields the introduction of the quantum transfer-matrix method. Thermo quantum dynamics is formulated using the quantum transfer-matrix method. This new formulation has the great merit that the thermal average 〈Q〉 for any observable Q in the thermodynamic limit is expressed as an expectation value over a temperature-dependent state vector in the single (conjugate) Hilbert space in the contrast to the usage of the double Hilbert space in thermo field dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Suzuki, J. Phys. Soc. Jpn. 21:2274(1966).See also H. F. Trotter, Proc. Amer. Math. Soc. 10:545(1959).

    Google Scholar 

  2. M. Suzuki, Comm. Math. Phys. 51:183(1976).

    Google Scholar 

  3. M. Suzuki, Prog. Theor. Phys. 56:1454(1976).

    Google Scholar 

  4. M. Suzuki, suggested in the symposium on computer experiments held on the 11th day of October, 1983, at Okayama University.

  5. M. Suzuki, Phys. Rev. B 31:2957(1985).

    Google Scholar 

  6. M. Suzuki and M. Inoue, Prog. Theor. Phys. 78:787(1987).

    Google Scholar 

  7. M. Inoue and M. Suzuki, Prog. Theor. Phys. 79:645(1988).

    Google Scholar 

  8. M. Suzuki, S. Miyashita, and A. Kuroda, Prog. Theor. Phys. 58:1377(1977).

    Google Scholar 

  9. M. Suzuki, J. Stat. Phys. 43:883(1986).

    Google Scholar 

  10. M. Suzuki (ed.), Quantum Monte Carlo Methods in Condensed Matter Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  11. H. Betsuyaku, Prog. Theor. Phys. 73:319(1985);75:774–808 (1986).

    Google Scholar 

  12. T. Tsuzuki, Prog. Theor. Phys. 73:1352(1985).

    Google Scholar 

  13. H. Betsyaku and T. Yokota, Prog. Theor. Phys. 75:808(1986).

    Google Scholar 

  14. K. Kubo and Takada, J. Phys. Soc. Jpn. 55:438(1986).

    Google Scholar 

  15. T. Koma, Prog. Theor. Phys. 71:269(1993).

    Google Scholar 

  16. K. Kubo, Phys. Rev. B 46:866(1992).

    Google Scholar 

  17. T. Delica, K. Kopinga, H. Leschke, and K. K. Mon, Europhys. Lett. 15:55(1991).

    Google Scholar 

  18. N. Hatano and M. Suzuki, Prog. Theor. Phys. 85:481(1991).

    Google Scholar 

  19. M. Suzuki, J. Stat. Phys. 49:977(1987).

    Google Scholar 

  20. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and condensed States (North-Holland, Amsterdam, 1982) and references cited therein.

    Google Scholar 

  21. M. Suzuki, J. Phys. Soc. Jpn. 54:4483(1985).

    Google Scholar 

  22. M. Suzuki, Phys. Lett. 111A:440(1985).

    Google Scholar 

  23. O. Bratteli and D. W. Robinson, Operator Algebra and Quantum Statistical Mechanics (Springer, 1979).

  24. M. E. Fisher, Rept. Prog. Phys. 30:615(1968).

    Google Scholar 

  25. C. Domb and M. S. Green (eds.), Phase Transitions and Critical Phenomena, Vol. 1–6(Academic Press, 1972–76); C. Domb and J. L. Lebowitz (eds.), Vol. 7 (1983).

  26. D. I. Uzunov, Introduction to the Theory of Critical Phenomena—Mean-field, Fluctuations and Renormalization (World Scientific, 1993).

  27. M. Suzuki, X. Hu, M. Katori, A. Lipowski, N. Hatano, K. Minami, and Y. Nonomura, Coherent Anomaly Method Mean Field, Fluctuations and Systematics (World Scientific, 1995).

  28. M. Suzuki, Phys. Lett. A 146:319(1990);165:387(1992).

    Google Scholar 

  29. M. Suzuki, J. Math. Phys. 32:400(1991).

    Google Scholar 

  30. M. Suzuki, J. Phys. Soc. Jpn. 61:3015(1992).

    Google Scholar 

  31. M. Suzuki, Physica A 191:501(1992).

    Google Scholar 

  32. M. Suzuki and T. Yamauchi, J. Math. Phys. 34:4892(1993).

    Google Scholar 

  33. M. Suzuki, Proc. Jpn. Acad. Ser. B 69:161(1993).

    Google Scholar 

  34. M. Suzuki, Comm. Math. Phys. 163:491(1994).

    Google Scholar 

  35. M. Suzuki, Physica A 205:65(1994); and references therein.

    Google Scholar 

  36. H. Yoshida, Phys. Lett. A 150:262(1990).

    Google Scholar 

  37. H. deRaedt and K. Michielsen, Comput. Phys. 8:600(1994);Ann. Physik 4:679(1995).

    Google Scholar 

  38. M. Suzuki, Comm. Math. Phys. 183:339(1997).

    Google Scholar 

  39. M. Suzuki, J. Math. Phys. 38:1183(1997).

    Google Scholar 

  40. M. Suzuki, Phys. Lett. A 224:337(1997).

    Google Scholar 

  41. There are about two hundred references on the applications, which will be listed elsewhere.

  42. The idea of thermo quantum dynamics was briefly reported at the conference on "Trends in Infinite Dimensional Analysis and Quantum Probability" in Kyoto, on the 20th of November, 2001.

  43. H. A. Kramers and G. H. Wannier, Phys. Rev. 60:252(1941).

    Google Scholar 

  44. R. Kubo, Busseiron Kenkyu 1:1(1943).

    Google Scholar 

  45. E. W. Montroll, J. Chem. Phys. 9:706(1941);10:61(1942).

    Google Scholar 

  46. E. N. Lassettre and J. P. Howe, J. Chem. Phys. 9:747(1941).

    Google Scholar 

  47. L. Onsager, Phys. Rev. 65:117(1944).

    Google Scholar 

  48. J. Suzuki, Y. Akutsu, and M. Wadati, J. Phys. Soc. Jpn. 59:2667(1990).

    Google Scholar 

  49. J. Suzuki, T. Nagao, and M. Wadati, Int. J. Mod. Phys. B 6:1119–1180 (1992).

    Google Scholar 

  50. C. Destri and H. J. de Vega, Phys. Rev. Lett. 69:2313(1992);Nuclear Phys. B 504:[PS] 621(1997). Their argument on the exponential degeneracy of the transfer matrix is confusing.

    Google Scholar 

  51. M. Takahashi, Phys. Rev. B 43:5788(1991).

    Google Scholar 

  52. H. Mizuta, T. Nagao, and M. Wadati, J. Phys. Soc. Jpn. 63:3951(1994).

    Google Scholar 

  53. A. Klümper, Z. Phys. B 91:507(1993).

    Google Scholar 

  54. A. Klümper, Eur. Phys. J. B 5:677(1998).

    Google Scholar 

  55. G. Jüttner and A. Klümper, Euro. Phys. Lett. 37:335(1997).

    Google Scholar 

  56. G. Jüttner, A. Klümper, and J. Suzuki, Nucl. Phys. B 487:650(1997).

    Google Scholar 

  57. G. Jüttner, A. Klümper, and J. Suzuki, J. Phys. A 30:1881(1997).

    Google Scholar 

  58. A. Kuniba, T. Nakanishi, and J. Suzuki, Int. J. Mod. Phys. A 9:5215(1994).

    Google Scholar 

  59. A. Kuniba, K. Sakai, and J. Suzuki, Nucl. Phys. B 525:[FS] 597(1998).

    Google Scholar 

  60. Y. Umeno, J. Phys. Soc. Jpn. 70:2531(2001), and references cited therein.

    Google Scholar 

  61. R. Blinc, J. Phys. Chem. Solids 13:204(1960).

    Google Scholar 

  62. P. G. de Gennes, Solid State Comm. 1:1963(1963).

    Google Scholar 

  63. S. Katsura, Phys. Rev. 127:1508(1962).

    Google Scholar 

  64. P. Pfeuty, Ann. Phys. 57:79(1970).

    Google Scholar 

  65. B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Models, and references cited therein.

  66. H. Araki, Commun. math. Phys. 14:120(1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, M. Methodology of Analytic and Computational Studies on Quantum Systems. Journal of Statistical Physics 110, 945–956 (2003). https://doi.org/10.1023/A:1022128423037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022128423037

Navigation