Skip to main content
Log in

A Multiple-Cell Flat-Level Model for Atmospheric Tracer Dispersion over Complex Terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A multiple-cell flat-level tracer dispersion model is developed for atmospheric pollution study. The horizontal domain may be constructed with multiple-sized cells for varied resolution. The sequence of cells is arbitrary, as in unstructured grids, as long as no holes are left in the horizontal domain, which may be tailored in shape according to local orography. The vertical levels are truly flat and the level spacing may vary from level to level. The surface orography is included by removing cells from the bottom of the three-dimensional cell block. The arrangement of wind velocity and tracer concentration is similar to the Arakawa C grid. Advection and horizontal diffusion are formulated on each cell face, using tracer concentrations in the two cells that share the cell face. Pointer-orientated numerical loops are used to facilitate the arbitrary horizontal cell arrangement and orographic variation of vertical levels. A second-order upstream upper limiter advection scheme is developed for this model and numerically tested to be positive-definite and mass conserving. Vertical diffusion is solved with an implicit scheme and simplified vertical diffusivity, which is parameterised as a function of the mixing layer depth. The model is fast, compact, easy to implement and highly portable. It is suitable for studies ofmesoscale and small-scale atmospheric tracer dispersion over complex terrain, including steep slopes. The model is used to simulate traffic pollution in London, UK, and is compared with available observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barratt, B., Beevers, S., Buckingham, C., Carslaw, D., Fuller, G., Hedley, S., Hutchinson, D., and Rice, J.: 1997, The AIM Project and Air Quality in London 1996, South East Institute of Public Health, Tunbridge Wells, Kent TN3 0XT, U.K., 216 pp.

    Google Scholar 

  • Berger, M. and Oliger, J.: 1984, 'Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations', J. Comput. Phys. 53, 484–512.

    Google Scholar 

  • Blayo, E. and Debreu, L.: 1999, 'Adaptive Mesh Refinement for Finite-Difference Ocean Models: First Experiments', J. Phys. Oceanog. 29, 1239–1250.

    Google Scholar 

  • Bott, A.: 1993, 'The Monotone Area-Preserving Flux-Form Advection Algorithm: Reducing the Time-Splitting Error in Two-Dimensional Flow Fields', Mon. Wea. Rev. 121, 2637–2641.

    Google Scholar 

  • Carpenter, K. M.: 1979, 'An Experimental Forecast Using a Non-Hydrostatic Mesoscale Model', Quart. J. Roy. Meteorol. Soc. 105, 629–655.

    Google Scholar 

  • Cox, M. D.: 1985, 'An Eddy-Resolving Numerical Model of the Ventilated Thermocline', J. Phys. Oceanog. 15, 1312–1324.

    Google Scholar 

  • Crowley, W. P.: 1968, 'Numerical Advection Experiments', Mon. Wea. Rev. 96, 1–11.

    Google Scholar 

  • Derwent, R. G., Middleton, D. R., Field, R. A., Goldstone, M. E., Lester, J. N., and Perry, R.: 1995, 'Analysis and Interpretation of Air Quality Data from an Urban Roadside Location in Central London over the Period from July 1991 to July 1992', Atmos. Environ. 29, 923–946.

    Google Scholar 

  • Gifford, F. A.: 1985, 'Atmospheric Diffusion in the Range 20–2000 km', in C. De Wispelaere et al. (eds.), Air Pollution Modelling and its Application, Vol. V, Plenum Press, New York, pp. 247–252.

    Google Scholar 

  • Godowitch, J. M., Ching, J. K. S., and Clarke, J. F.: 1985, 'Evolution of the Nocturnal Inversion Layer at an Urban and Nonurban Location', J. Clim. Appl. Meteorol. 24, 791–804.

    Google Scholar 

  • Golding, B. W.: 1987, 'The U.K. Meteorological Office Mesoscale Model', Boundary-Layer Meteorol. 41, 91–107.

    Google Scholar 

  • Leonard, B. P.: 1996, 'Conservative Explicit Unrestricted-Time-Step Multidimensional Constancy-Preserving Advection Scheme', Mon. Wea. Rev. 124, 2588–2606.

    Google Scholar 

  • Leone, Jr. J. M. and Lee, R. L.: 1989, 'Numerical Simulation of Drainage Flow in Brush Creek, Colorado', J. Appl. Meteorol. 28, 530–542.

    Google Scholar 

  • Li, J. G. and Atkinson, B. W.: 1999, 'Transition Regimes in Valley Airflows', Boundary-Layer Meteorol. 91, 385–411.

    Google Scholar 

  • Li, J. G. and Atkinson, B. W.: 2000, 'An Inert Tracer Dispersion Scheme for Use in a Mesoscale Atmospheric Model', Atmos. Environ. 34, 4011–4018.

    Google Scholar 

  • Mesinger, F., Janjic, A. I., Nickovic, S., Gavrilov, D., and Deaven, D. G.: 1988, 'The Step-Mountain Coordinate: Model Description and Performance for Cases of Alpine Lee Cyclogenesis and for a Case of an Appalachian Redevelopment', Mon. Wea. Rev. 116, 1493–1518.

    Google Scholar 

  • Peters, L. K., Berkowitz, C. M., Carmichael, G. R., Easter, R. C., Fairweather, G., Gham, S. J., Hales, J. M., Leung, L. R., Pennell, W. R., Potra, F. A., Saylor, R. D., and Tsang, T. T.: 1995, 'The Current State and Future Direction of Eulerian Models in Simulating the Tropospheric Chemistry and Transport of Trace Species: A Review', Atmos. Environ. 29, 189–222.

    Google Scholar 

  • Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, Orlando, FL, 612 pp.

    Google Scholar 

  • Pielke, R. A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. Z., Lee, T. J., and Copeland, J. G.: 1992, 'A Comprehensive Meteorological Modeling System-RAMS', Meteorol. Atmos. Phys. 49, 69–91.

    Google Scholar 

  • Skamarock, W. C. and Klemp, J. B.: 1993, 'Adaptive Grid Refinement for 2D and 3D Nonhydrostatic Atmospheric Flowes', Mon. Wea. Rev. 121, 788–804.

    Google Scholar 

  • Smolarkiewicz, P. K.: 1982, 'The Multi-Dimensional Crowley Advection Schemes', Mon. Wea. Rev. 110, 1968–1983.

    Google Scholar 

  • Smolarkiewicz, P. K. and Grabowski, W. W.: 1990, 'The Multidimensional Positive Definite Advection Transport Algorithm: Nonoscillatory Option', J. Comput. Phys. 86, 355–375.

    Google Scholar 

  • Staniforth, A., Cote, J., and Pudykiewicz, J.: 1987, 'Comments on “Smolarkiewicz's Deformation Flow”', Mon. Wea. Rev. 115, 894–900.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Tapp, M. C. and White, P.W.: 1976, 'A Non-Hydrostatic Mesoscale Model', Quart. J. Roy. Meteorol. Soc. 102, 277–296.

    Google Scholar 

  • Thuburn, J.: 1997, 'TVD Schemes, Positive Schemes, and the Universal Limiter', Mon. Wea. Rev. 125, 1990–1993.

    Google Scholar 

  • Tremback, C. J., Powell, J., Cotton, W. R., and Pielke, R. A.: 1987, 'The Forward-in-Time Upstream Advection Scheme: Extension to Higher Orders', Mon. Wea. Rev. 115, 540–555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JG. A Multiple-Cell Flat-Level Model for Atmospheric Tracer Dispersion over Complex Terrain. Boundary-Layer Meteorology 107, 289–322 (2003). https://doi.org/10.1023/A:1022115808637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022115808637

Navigation