Skip to main content
Log in

Steam Reforming of Sunflower Oil over Ni/Al Catalysts Prepared from Hydrotalcite-Like Materials

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Using catalytic steam reforming of biofuels to produce hydrogen for energy systems based on fuel cells is an option that may help to reduce the net emissions of CO2 into the atmosphere. Vegetable oils are some of the most interesting options because of their high potential yield of hydrogen. They are, however, more difficult to reform than the light hydrocarbon feedstocks that are used for producing hydrogen industrially by steam reforming. Catalysts prepared from hydrotalcite-like materials are promising for use in the steam reforming of vegetable oils, since their catalytic activity is significantly higher than that of commercial catalysts for hydrocarbon steam reforming. In this paper, a study is made of how the nickel content of HT-derived catalysts affects their activity for steam reforming of sunflower oil. Three catalysts were prepared with Ni/Al atomic ratios of 1, 2, and 3, respectively. The samples were characterized by various techniques to correlate their activity with the structural characteristics of the catalysts: X-ray diffraction (XRD), BET, thermogravimetric analysis (TGA), and hydrogen chemisorption. The results showed that the catalyst activity increased as the nickel content in the material decreased. The support and its properties seemed to play a key role in the performance of the HT-derived catalysts. This is probably because a decrease in the Ni content produces a better dispersion of the metal and higher BET areas, which leads to a higher capacity for water adsorption. With the most active catalyst (Ni/Al of 1), 2.2 mol H2/(gcat h) was produced at 575 °C, 2 bar, and a steam-to-carbon ratio of 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Quakernaat, Int. J. Hydrogen Energy 20 (1995) 485.

    Google Scholar 

  2. J. N. Armor, Appl. Catal. A: Gen. 176 (1999) 159.

    Google Scholar 

  3. D. E. Ridler and M. V. Twigg, in: Catalysis Handbook, ed. M. V. Twigg (Wolfe Publishing, Cleveland, UK, 1989).

    Google Scholar 

  4. P. L. Spath and M. K. Mann, National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637 (2000).

  5. B. Gaudernack and S. Lynum, Int. J. Hydrogen Energy 23 (1998) 1087.

    Google Scholar 

  6. T. A. Milne, C. C. Elam and R. J. Evans, Report for the International Energy Agency Agreement on the Production and Utilization of Hydrogen, IEA/H2/TR-02/001 (2001).

  7. R. J. Evans, R. A. Knight, M. Onischak and S. P. Babu, in: Proceedings of Energy from Biomass and Wastes X, ed. D. L. Klass (Institute of Gas Technology, Chicago, IL, 1988).

    Google Scholar 

  8. W. B. Hauserman, Int. J. Hydrogen Energy 19 (1994) 413.

    Google Scholar 

  9. L. Garcıa, M. L. Salvador, J. Arauzo and R. Bilbao, Energy Fuels 13 (1999) 851.

    Google Scholar 

  10. M. Caballero, J. Corella, M. Aznar and J. Gil, Ind. Eng. Chem. Res. 39 (2000) 1143.

    Google Scholar 

  11. E. Chornet, D. Wang, D. Montane, S. Czernik, D. Johnson and M. Mann, in: Proceedings of the 1995 U.S. DOE Hydrogen Program Review, NREL/CP-430-20036 (National Renewable Energy Laboratory, Golden, CO, 1995), p. 707.

    Google Scholar 

  12. M. Mann, P. Spath and K. Kadam, in: Proceedings of the 1995 U.S. DOE Hydrogen Program Review, NREL/CP-430-20036 (National Renewable Energy Laboratory, Golden, CO, 1995), p. 205.

    Google Scholar 

  13. D. Wang, D. Montane and E. Chornet, Appl. Cat. A: Gen. 143 (1996) 245.

    Google Scholar 

  14. D. Wang, S. Czernik, D. Montane, M. Mann and E. Chornet, Ind. Eng. Chem. Res. 36 (1997) 1507.

    Google Scholar 

  15. D. Wang, S. Czernik and E. Chornet, Energy Fuels 12 (1998) 19.

    Google Scholar 

  16. M. Marquevich, S. Czernik, E. Chornet and D. Montane, Energy Fuels 13 (1999) 1160.

    Google Scholar 

  17. S. Caballaro and S. Freni, Int. J. Hydrogen Energy 21 (1996) 465.

    Google Scholar 

  18. S. Freni, G. Maggio and S. Caballaro, J. Power Sources 62 (1996) 67.

    Google Scholar 

  19. F. J. Marino, E. G. Cerrella, S. Duhalde, M. Jobbagy and M. A. Laborde, Int. J. Hydrogen Energy 23 (1998) 1095.

    Google Scholar 

  20. M. Marquevich, R. Coll and D. Montane, Ind. Eng. Chem. Res. 39 (2000) 2140.

    Google Scholar 

  21. M. Marquevich, F. Medina and D. Montane, Catal. Commun. 2 (2001) 119.

    Google Scholar 

  22. M. Marquevich, X. Farriol, F. Medina and D. Montane, Ind. Eng. Chem. Res. 40 (2001) 4757.

    Google Scholar 

  23. Y. Ali and M. A. Hanna, Bioresource Technol. 50 (1994) 153.

    Google Scholar 

  24. M. Stumbort, A. Wong and E. Hogan, Bioresource Technol. 56 (1996) 13.

    Google Scholar 

  25. F. Karaosmanoglu, K. B. Cigizoglu, M. Tuter and S. Ertekin, Energy Fuels 10 (1996) 890.

    Google Scholar 

  26. R. Allmann and H. H. Lohse, N. Jhb. Miner. Mh. 6 (1966) 161.

    Google Scholar 

  27. L. Ingram and H. P. Jepsen, N. Jhb. Miner. Mh. 36 (1967) 465.

    Google Scholar 

  28. H. F. W. Taylor, Miner. Mag. 39 (1973) 377.

    Google Scholar 

  29. Bhattacharyya, V. W. Chang and D. J. Shumacher, Appl. Clay Sci. 13 (1998) 317.

    Google Scholar 

  30. F. Cavani, F. Trifiro and A. Vaccari, Catal. Today 11 (1991) 173.

    Google Scholar 

  31. D. Tichit, B. Coq, S. Ribet, R. Durand and F. Medina, Stud. Surf. Sci. Catal. 130A (2000) 503.

    Google Scholar 

  32. F. Trifiro and A. Vaccari, Compr. Supramolec. Chem. 7 (1996) 25.

    Google Scholar 

  33. Corma, V. Fornes, R. M. Martin-Aranda and F. Rey, J. Catal. 134 (1992) 58.

    Google Scholar 

  34. F. Medina, D. Tichit, B. Coq, A. Vaccari and N. T. Dung, J. Catal. 167 (1997) 142.

    Google Scholar 

  35. D. Tichit, M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, B. Bartalini and E. Garrone, J. Catal. 151 (1995) 150.

    Google Scholar 

  36. P. Courty, D. Durand, E. Freund and A. Surgier, J. Mol. Catal. 17 (1982) 241.

    Google Scholar 

  37. P. Gherardi, O. Ruggeri, F. Trifiro, A. Vaccari, G. Del Piero, G. Manara and B. Notari, Stud. Surf. Sci. Catal. 16 (1983) 723.

    Google Scholar 

  38. E. C. Druissink, L. L. Van Reijen and J. R. H. Ross, J. Chem. Soc., Faraday Trans. I 77 (1981) 649.

    Google Scholar 

  39. H. G. J. Lansink Rotgerink, H. Bosch, J. G. Van Ommen and J. R. H. Ross, Appl. Catal. 27 (1986) 41.

    Google Scholar 

  40. G. W. Bridger and W. Wyrwas, Chem. Proc. Eng. Sept. (1967) 101.

  41. C. R. Schnell, J. Chem. Soc. B (1970) 158.

  42. J. R. Rostrup-Nielsen, Chem. Eng. Prog. 73 (1977) 87.

    Google Scholar 

  43. J. Xu and G. F. Froment, AIChE J. 35 (1989) 88.

    Google Scholar 

  44. P. A. Simell, E. K. Hirvensato, V.T Smolander and A. O. I. Krause, Ind. Eng. Chem. Res. 38 (1999) 1250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montané.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquevich, M., Farriol, X., Medina, F. et al. Steam Reforming of Sunflower Oil over Ni/Al Catalysts Prepared from Hydrotalcite-Like Materials. Catalysis Letters 85, 41–48 (2003). https://doi.org/10.1023/A:1022112622864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022112622864

Navigation