Advertisement

Water, Air and Soil Pollution: Focus

, Volume 3, Issue 1, pp 27–46 | Cite as

The importance of chemical buffering for pelagic and benthic colonization in acidic waters

  • B. NixdorfEmail author
  • D. Lessmann
  • C. E. W. Steinberg
Article

Abstract

In poorly buffered areas acidification may occur for two reasons: through atmospheric deposition of acidifying substances and – in mining districts – through pyrite weathering. These different sources of acidity lead to distinct clearly geochemistry in lakes and rivers. In general, the geochemistry is the major determinant for the planktonic composition of the acidified water bodies, whereas the nutrient status mainly determines the level of biomass. A number of acidic mining lakes in Eastern Germany have to be neutralized to meet the water quality goals of the European Union Directives and to overcome the ecological degradation. This neutralization process is limnologically a short-term maturation of lakes, which permits biological succession to overcome two different geochemical buffer systems. First, the iron buffer system characterizes an initial state, when colonization starts: there is low organismic diversity and productivity, clear net heterotrophy in most cases. Organic carbon that serves as fuel for the food web derives mainly from allochthonous sources. In the second, less acidic state aluminum is the buffer. This state is found exceptionally among the hard water mining lakes, often as a result of deposition of acidifying substances onto soft water systems. Colonization in aluminum-buffered lakes is more complex and controlled by the sensitivity of the organisms towards both, protons and inorganic reactive aluminum species. In soft-water systems, calcium may act as antidote against acid and aluminum; however, this function is lost in hard water post mining lakes of similar proton concentrations. Nutrient limitations may occur, but these do not usually control qualitative and quantitative plankton composition. In these lakes, total pelagic biomass is controlled by the bioavailability of nutrients, particularly phosphorus.

acidic lakes buffering colonization deposition acidified soft water lakes geochemistry lake classification mining lakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alles, E.: 1999, 'Fließ gewässerversauerung im Schwarzwald. Ökologische Bewertung auf der Basis benthischer Diatomeen', Doctoral Dissertation, Biological Department, University Frankfurt/ Main, 507 pp.Google Scholar
  2. Alles, E., Nörpel-Schempp, M. and Lange-Bertalot, H.: 1991, 'Taxonomy and ecology of characteristic Eunotia species (Bacillariophyceae) in headwaters with low electric conductivity', Nova Hedwigia 53, 171–213.Google Scholar
  3. Almer, B., Dickson, W., Ekström, C., Hörnström, E. and Miller, U.: 1974, 'Effects of acidification on Swedish lakes', Ambio 3, 30–36.Google Scholar
  4. Almer, B., Dickson, W., Ekström, C. and Hörnström, E.: 1978, 'Sulfur pollution and the aquatic ecosystem', in J. O. Nriagu (ed.), Sulfur in the Environment, Part II - Ecological Impacts, J. Wiley & Sons, pp. 271–311.Google Scholar
  5. Bitušík, P. and Kubovčík, V.: 2000, 'Sub-fossil chironomid assemblages (Diptera: Chironomidae) from the Černé lake and Prášilské lake (Bohemian Forest, Czech Republic), Silva Gabreta 4, 253–258.Google Scholar
  6. Brakke, D. F., Henriksen, A. and Norton, S. A.: 1987, 'The relative importance of acidity sources for humic lakes in Norway', Nature 329, 432–434.Google Scholar
  7. Brodin, Y.-W.: 1995, 'Acidification of Swedish freshwaters', in L. Henrikson and Y.W. Brodin (eds.), Liming of Acidified Surface Waters. A Swedish Synthesis, Springer Verlag Berlin, Heidelberg, pp. 63–80.Google Scholar
  8. Chabbi, A.: 1999, 'Juncus bulbosus as a pioneer species in acidic lignite mining lakes: Interactions, mechanism and survival strategies', New Phytol. 144, 133–142.Google Scholar
  9. Cole, J. J., Caraco, N. F., Kling, G.W. and Kratz, T. K.: 1994, 'Carbon dioxide supersaturation in the surface waters of lakes', Science, 265, 1568–1570.Google Scholar
  10. Davison, W., Reynolds, C. S. and Tipping, E.: 1989, 'Reclamation of acid waters using sewage sludge', Environmental Pollution, 57, 251–274.Google Scholar
  11. den Hartog C. and Wendelaar Bonga, S. E.: 1990, 'Umbra pygmaea, an acid-tolerant fish', Naturwissenschaften 77, 40–41.Google Scholar
  12. Deneke, R.: 2000, 'Review of rotifers and crustaceans in highly acidic environments of pH values ≤ 3', Hydrobiologia 433, 167–172.Google Scholar
  13. DeNicola, D. M.: 2000, 'A review of diatoms found in highly acidic environments', Hydrobiologia 433, 111–122.Google Scholar
  14. DEV: 1986- 1998, Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung, Verlag Chemie, Weinheim.Google Scholar
  15. Dixit, S. S. and Smol, J. P.: 1989, 'Algal assemblages in acid-stressed lakes with particular emphasis on diatoms and chrysophytes', in S. S. Rao (ed.), Acid Stress and Aquatic Microbial Interactions, CRC Press, Boca Raton, FL, U.S.A., pp. 91–114.Google Scholar
  16. Driscoll, C. T., Baker, J. T., Bisogni, J. J. and Schofield, C. L.: 1980, 'Effects of aluminium speciation on fish in dilute acidified waters', Nature 284, 161–164.Google Scholar
  17. Duis, K. and Oberemm, A.: 2000a, 'Sensitivity of early life stage of vendace, Coregonus alba, to acid pH in postmining lakes: An experimental approach', Environ. Toxicol. 15, 214–224.Google Scholar
  18. Duis, K. and Oberemm, A.: 2000b, 'Survival and sublethal response of early life stages of pike, Esox lucius, exposed to low pH in artificial post-mining lake water', J. Fish Biol. 57, 597–613.Google Scholar
  19. Duis, K. and Oberemm, A.: 2001, 'Aluminium and calcium - key factors determining the survival of vendace embryos and larvae in post-mining lakes?', Limnologica 31, 3–10.Google Scholar
  20. Duis, K.: 2001,'Toxicity of acidic post-mining lake water to early life stages of tench, Tinca tinca (Cyprinidae)', Water, Air, and Soil Pollut. 132, 373–388.Google Scholar
  21. Fee, E. J.: 1976, 'The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates', Limnol. Oceanogr. 21, 767–783.Google Scholar
  22. Fott, J. and Pražáková, M.: 1994, 'Zooplankton decline in the Černé Lake (Šumava Mountains, Bohemia) as reflected in the stratification of Cladoceran remains in the sediment', Hydrobiologia 274, 21–126.Google Scholar
  23. Fott, J., Pražáková, M., Stuchlík, E. and Stuchlíková, Z.: 1994, 'Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia)', Hydrobiologia 274, 37–47.Google Scholar
  24. Friese, K., Hupfer, M. and Schultze, M.: 1998, 'Chemical characteristics of water and sediment in acidic mining lakes of the Lusatian lignite district', in W. Geller, H. Klapper and W. Salomons (eds.), Acidic Mining Lakes, Springer-Verlag, Berlin, pp. 25–46.Google Scholar
  25. Fyson, A.: 2000, 'Angiosperms in acidic waters at pH 3 and below', Hydrobiologia 433, 129–135.Google Scholar
  26. Fyson, A, Nixdorf, B. and Steinberg, C. E. W.: 1998a, 'Mesocosm studies to assess acidity removal from acidic mining lakes through controlled eutrophication', Ecol. Engineer. 10, 229–245.Google Scholar
  27. Fyson, A, Nixdorf, B. and Steinberg, C. E. W.: 1998b, 'Manipulation of sediment-water interface of extremely acidic mining lakes with potatoes: Laboratory studies with intact sediment cores', Water, Air, and Soil Pollut. 108, 353–363.Google Scholar
  28. Geller, W., Klapper, H. and Schultze, M.: 1998, 'Natural and anthropogenic acidification of lakes', in W. Geller, H. Klapper and W. Salomons (eds.), Acidc Mining Lakes, Springer-Verlag, Berlin, pp. 3–14.Google Scholar
  29. Goldman, J. C., Oswald, W. J. and Jenkins, D.: 1974, 'The kinetics of inorganic carbon limited algal growth', J. Wat. Poll. Control. Fed. 46, 554–574.Google Scholar
  30. Gross, S. and Robbins, E. I.: 2000, 'Acidophilic and acid-tolerant fungi and yeasts', Hydrobiologia 433, 91–109.Google Scholar
  31. Gyure, R. A., Konopka, A., Brooks, A. and Doemel, W.: 1987, 'Algal and bacterial activities in acidic (pH 3) strip mine lakes', Appl. Env. Microbiol. 53, 2069–2076.Google Scholar
  32. Herzsprung, P., Friese, K., Packroff, G., Schimmele, M., Wendt-Potthoff, K. and Winkler, M.: 1998, 'Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes', Acta Hydrochim. Hydrobiol. 26, 253–262.Google Scholar
  33. Husák, Š., Vöge, M. and Weilner, C.: 2000, 'Isoë tes echinospora and I. lacustris in the Bohemian Forest lakes in comparison with other European sites', Silva Gabreta 4, 245–252.Google Scholar
  34. Jacob, W. and Kapfer, M.: 1999, 'Morphologie und Taxonomie von Fadenalgen im sauren Tagebaurestsee Koschen (Lausitz, Brandenburg)', Lauterbornia 35, 71–80.Google Scholar
  35. Johnson, D. B.: 1998, 'Biological abatement of acid mine drainage: The role of acidophilic protozoa and other indigenous microflora', in W. Geller, H. Klapper and W. Salomons (eds.), Acidic Mining Lakes, Springer-Verlag, Berlin, pp. 285-301.Google Scholar
  36. Kapfer, M.: 1998, 'Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany)', Water, Air, and Soil Pollut. 108, 331–340.Google Scholar
  37. Kapfer, M., Nixdorf, B., Fyson, A. and Bartenbach, B.: 1999, 'Die Bedeutung des Benthals für das limnologische Entwicklungspotential von Tagebauseen', in R. F. Hüttl, D. Klem, E. Weber (eds.), Rekultivierung von Bergbaufolgelandschaften, DeGruyter Verlag, Berlin, pp. 205–218.Google Scholar
  38. Kettle, W. D., Moffett, M. F. and de Noyelles, F. Jr.: 1987, 'Vertical distribution of zooplankton in an experimentally acidified lake containing a metalimnetic phytoplankton peak', Can. J. Fish. Aquat. Sci. 44 (Suppl. 1), 91–95.Google Scholar
  39. Kortelainen, P.: 1993, 'Contribution of organic acids to the acidity of Finnish lakes', Publ. Water Envir. Res. Inst. 13, 1–48.Google Scholar
  40. Kortelainen, P.: 1999, 'Acidity and buffer capacity', in J. Keskitalo and P. Eloranta (eds.), Limnology of Humic Waters, Backhuys Publishers, Leiden, pp. 95–115.Google Scholar
  41. Krause-Dellin, D. and Steinberg, C.: 1984, 'Evidence of lake acidification by a novel biological pH-meter', Environ. Sci. Technol. Lett. 5, 403–407.Google Scholar
  42. Krause-Dellin, D. and Steinberg, C.: 1986, 'Cladoceran remains as indicators of lake acidification', Hydrobiologia 143, 129–134.Google Scholar
  43. Krumbeck, H., Nixdorf, B. and Fyson, A.: 1998, 'Ressourcen der Bioproduktion in extrem sauren Tagebauseen der Lausitz - Angebot, Verfügbarkeit und Umsetzung', BTU Cottbus, Aktuelle Reihe 5/98, 7–17.Google Scholar
  44. Kwiatkowski, R. E. and Roff, J. C.: 1976, 'Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes', Can. J. Bot. 54, 2546–2561.Google Scholar
  45. Lessmann, D. and Nixdorf, B.: 2000, 'Acidification control of phytoplankton diversity, spatial distribution and trophy in mining lakes', Verh. Internat. Verein. Limnol. 27, 2208–2211.Google Scholar
  46. Lessmann, D., Fyson, A. and Nixdorf, B.: 2000, 'Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3', Hydrobiologia 433, 123–128.Google Scholar
  47. Lessmann, D. and Nixdorf, B.: 2002, 'Seasonal succession of phytoplankton in acidic mining lakes', Verh. Internat. Verein. Limnol. 28.Google Scholar
  48. Leuven, R. S. E. W., Wendelaar Bonga, S. E., Oyen, F. G. F. and Hagemeijer, W.: 1987, 'Effects of acid stress on the distribution and reproductive success of freshwater fish in Dutch soft waters', Ann. Soc. Roy. Zool. Belg. 117, 231–242.Google Scholar
  49. Maberly, S. C.: 1996, 'Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake', Fresh. Wat. Biol. 35, 579–598.Google Scholar
  50. Melzer, A. and Rothmeyer, E.: 1983, 'Die Auswirkung der Versauerung der beiden Arberseen im Bayerischen Wald auf die Makrophytenvegetation', Ber. Bayer. Bot. Gesell. 54, 9–18.Google Scholar
  51. Melzer, A., Held, K. and Harlacher, R.: 1985a, 'Die Makrophytenvegetation des Groß en Arbersee - neueste Ergebnisse', Ber. Bayer. Bot. Gesell. 56, 217–222.Google Scholar
  52. Melzer, A., Held, K. and Harlacher, R.: 1985b, 'Die Makrophytenvegetation des Rachelsees im Inneren Bayerischen Wald', Ber. Bayer. Bot. Gesell. 56: 223–226.Google Scholar
  53. Nedbalová, L. and Vrtiška, O.: 2000, 'Distribution of phytoplankton of Bohemian Forest lakes', Silva Gabreta 4, 213–222.Google Scholar
  54. Nilssen, J. P.: 1980, 'Acidification of a small watershed in southern Norway and some characteristics of acidic aquatic environments', Int. Rev. ges. Hydrobiol. 65, 177–207.Google Scholar
  55. Nixdorf, B. and Hoeg, S.: 1993, 'Phytoplankton-community structure, succession and chlorophyll content in Lake Müggelsee from 1979 to 1990', Int. Revue ges. Hydrobiol 78, 359–377.Google Scholar
  56. Nixdorf, B., Rücker, J., Köcher, B. and Deneke, R.: 1995, 'Erste Ergebnisse zur Limnologie von Tagebaurestseen in Brandenburg unter besonderer Berücksichtigung der Besiedlung imPelagial', inW. Geller and G. Packroff (eds.), Abgrabungsseen - Risiken und Chancen, Limnologie aktuell 7, G. Fischer Verlag, Stuttgart, pp. 39–52.Google Scholar
  57. Nixdorf, B., Lessmann, D., Grünewald, U. and Uhlmann, W.: 1997, 'Limnology of extremely acidic mining lakes in Lusatia (Eastern Germany) and their fate between acidity and eutrophication', Proceedings of the 4th Int. Conference on Acid Rock Drainage, Vancouver, BC, Canada 1997, Vol. IV, 1745–1760.Google Scholar
  58. Nixdorf, B., Wollmann, K. and Deneke, R.: 1998a, 'Ecological potential for planktonic development and food web interactions in extremely acidic mining lakes', in W. Geller, H. Klapper and W. Salomons (eds.), Acidic Mining Lakes, Springer-Verlag, Berlin, pp. 147–167.Google Scholar
  59. Nixdorf, B., Mischke, U. and Lessmann, D.: 1998b, 'Chrysophyta and Chlorophyta - pioneers of plankton development in extremely acidic mining lakes in Lusatia', Hydrobiologia 369/370, 315–327.Google Scholar
  60. Nixdorf, B. and Hemm, M.: 2001, 'Besonderheiten im Stoffhaushalt künstlicher Klarwasserseen Südostbrandenburgs (Tagebauseen der Lausitz) - ein Ñberblick', Beitr. Angew. Gewässerökol. Norddeutschl. 4, 32–39.Google Scholar
  61. Nixdorf, B., Fyson, A. and Krumbeck, H.: 2001, 'Review: Plant life in extremely acidic waters', Environmental and Experimental Botany 46, 203–211.Google Scholar
  62. Økland, J. and Økland, K. A.: 1986, 'The effect of acid deposition on benthic animals', Experientia 42, 471–486.Google Scholar
  63. Olaveson, M. M. and Nalewajko, C.: 1994, 'Acid rain and freshwater algae', Arch. Hydrobiol. Beih. 42, 99–123.Google Scholar
  64. Packroff, G. and Woelfl, S.: 2000, 'A review on the occurrence and taxonomy of heterotrophic protists in extreme acidic environments of pH values ≤ 3', Hydrobiologia 433, 153–156.Google Scholar
  65. Porter, K. G. and Feig, Y. S.: 1980, 'The use of DAPI for identifying and counting microflora', Limnol. Oceanogr. 25, 943–948.Google Scholar
  66. Renberg, I., Hellberg, T. and Nilsson, M.: 1985, 'Effects of acidification on diatom communities as revealed by analyses of lake sediments. Lake Gardsjön - an acid forest lake and its catchment', Ecol. Bull. 37.Google Scholar
  67. Rosseland, B. O. and Staurnes, M.: 1994, 'Physiological mechanisms for toxic effects and resistance to acidic water: An ecophysiological and ecotoxicological approach', in C. E. W. Steinberg and R. F. Wright (eds.), Acidification of Freshwater Ecosystems. Implications for the Future, John Wiley & Sons, Chichester, pp. 227–246.Google Scholar
  68. Scharf, B. W., Hofmann, G., Packroff, G., Rodrigues, G. and Wilhelmy, H.: 2000, 'Entwicklung der Versauerung in einigen Braunkohletagebau-Restseen in der Niederlausitz', in K. Friese and W. v. Tümpling (eds.), Biologische und chemische Entwicklung von Bergbaurestseen, UFZ-Bericht 26/2000, pp. 199–210.Google Scholar
  69. Schindler, D. W. and Holmgren, S. K.: 1971, 'Primary production and phytoplankton in the Experimental Lakes Area, northwestern Ontario, and other low carbonate waters, and a liquid scintillation method for determining C14 activity in photosynthesis', J. Fish. Res. Board Can. 28, 189.Google Scholar
  70. Schindler, D. W. and Turner, M. A.: 1982, 'Biological, chemical and physical responses of lakes to experimental acidification', Water, Air, and Soil Pollut. 18, 259–271.Google Scholar
  71. Schindler, D. W.: 1994, 'Changes caused by acidification to the biodiversity: Productivity and biogeochemical cycles of lakes', in C. E. W. Steinberg and R.F. Wright (eds.), Acidification of Freshwater Ecosystems. Implications for the Future, John Wiley & Sons, Chichester, pp. 153–164.Google Scholar
  72. Steinberg, C., Meier, R., Emeis-Schwarz, H., Krause-Dellin, D. and Arzet, K.: 1984, 'Versauerung des Groß en Arbersees, dokumentiert durch paläolimnologische Untersuchungen', Vom Wasser 63, 35–56.Google Scholar
  73. Steinberg, C. E. W. and Wright, R. F. (eds.): 1994, Acidification of freshwater ecosystems. Implications for the future, John Wiley & Sons, Chichester, Environmental Science 14, 404 pp.Google Scholar
  74. Steinberg, C. E.W., Schäfer, H. and Beisker, W: 1998, 'Do acid tolerant Cyanobacteria exist?', Acta hydrochim. hydrobiol. 26, 13–19.Google Scholar
  75. Steinberg, C. E. W., Fyson, A. and Nixdorf, B.: 1999, 'Extrem saure Seen in Deutschland', Biologie in unserer Zeit 29, 98–109.Google Scholar
  76. Steinberg, C. E.W., Totsche, O., Fyson, A. and Nixdorf, B.: 2001, 'De-acidification of flooded lignite mining lakes by controlled eutrophication: Microcosms experiments', in S. R. Rao, L. M. Amartunga, P. D. Kondos, G. G. Richards, N. Kuyucak and J. A. Kozinski (eds.),Waste Processing and Recycling in Mineral and Metallurgical Industries IV, Canadian Institute of Mining, Metallurgy and Petroleum, pp. 357–369.Google Scholar
  77. Straškrabová, V., Fott, J., Hartman, P., Macek, M., Nedoma, J., Šimek, K. and Vrba, J.: 2000, 'Structure of pelagic webs in low-alkalinity lakes - forested and alpine catchments', Silva Gabreta 4, 199–212.Google Scholar
  78. Stumm, W. and Morgan, J. J.: 1996, Aquatic Chemistry: Chemical equilibria and rates in natural waters, 3rd ed., John Wiley & Sons, New York.Google Scholar
  79. Utermöhl, H.: 1958, 'Zur Vervollkommnung der quantitativen Phytoplanktonmethodik', Mitt. Internat. Verein. Limnol. 9, 1–38.Google Scholar
  80. Vähätalo, A. V., Salkinoja-Salonen, M., Taalas, P. and Salonen, K.: 2000, 'Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake', Limnol. Oceanogr. 45, 664–676.Google Scholar
  81. Van Dam, H., Suurmond, G. and ter Braak, C. J. F.: 1981, 'Impact of acidification on diatoms and chemistry of Dutch moorland pools', Hydrobiologia 83, 425–459.Google Scholar
  82. Vollenweider, R. and Kerekes, J.: 1982, Eutrophication of Waters. Monitoring, Assessment and Control, OECD Report, Paris.Google Scholar
  83. Vrba, J., Kopáček, J., Straškrabová, V., Hejzlar, J. and Šimek, K.: 1996, 'Limnological research of acidified lakes in Czech part of the Šumava Mountains: Trophic status and dominance of microbial food webs', Silva Gabreta 1, 151–164.Google Scholar
  84. Weilner, C.: 1997, Die Eiszeitseen des Bayerischen Waldes, Selbstverlag, 284 pp.Google Scholar
  85. Wendelaar Bonga, S. E., Flik, G. and Balm, P. H. M.: 1987, 'Physiological adaptation to acid stress in fish', Ann. Soc. Roy. Zool. Belg. 117, 243–254.Google Scholar
  86. Wendt-Potthoff, K. and Neu, T. R.: 1998, 'Microbial processes for potential in-situ remediation of acidic lakes', in W. Geller, H. Klapper and W. Salomons (eds.), Acidic Mining Lakes, Springer Verlag, pp. 269–284.Google Scholar
  87. Whitton, B. A., Albertano, P. and Satake, K. (eds.): 2000, 'Chemistry and ecology of highly acidic environments', Hydrobiologia 433, 185 pp.Google Scholar
  88. Wildi, E., Nagel, R. and Steinberg, C.: 1994, 'Effects of pH on the bioconcentration of pyrene in the larval midge, Chironomus riparius', Wat. Res. 28, 2553–2559.Google Scholar
  89. Woelfl, S. and Whitton, B. A.: 2000, 'Sampling, preservation and quantification of biological samples from highly acidic environments (pH ≤ 3)', Hydrobiologia 433, 173–180.Google Scholar
  90. Wollmann, K.: 2000, 'Corixidae (Hemiptera, Heteroptera) in acidic mining lakes with pH = 3 in Lusatia, Germany', Hydrobiologia 433, 181–183.Google Scholar
  91. Wollmann, K., Deneke, R., Nixdorf, B. and Packroff, G.: 2000, 'Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2- 4)', Hydrobiologia 433, 3–14.Google Scholar
  92. Yan, N. D.: 1979, 'Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973- 1977', Water, Air, and Soil Pollut. 11, 43–55.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Chair of Water Conservation, Faculty of Environmental SciencesBrandenburg University of Technology at CottbusBad SaarowGermany
  2. 2.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations