Skip to main content
Log in

Smooth muscle myosin filament assembly under control of a kinase-related protein (KRP) and caldesmon

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Kinase-related protein (KRP) and caldesmon are abundant myosin-binding proteins of smooth muscle. KRP induces the assembly of unphosphorylated smooth muscle myosin filaments in the presence of ATP by promoting the unfolded state of myosin. Based upon electron microscopy data, it was suggested that caldesmon also possessed a KRP-like activity (Katayama et al., 1995, J Biol Chem 270: 3919–3925). However, the nature of its activity remains obscure since caldesmon does not affect the equilibrium between the folded and unfolded state of myosin. Therefore, to gain some insight into this problem we compared the effects of KRP and caldesmon, separately, and together on myosin filaments using turbidity measurements, protein sedimentation and electron microscopy. Turbidity assays demonstrated that KRP reduced myosin filament aggregation, while caldesmon had no effect. Additionally, neither caldesmon nor its N-terminal myosin binding domain (N152) induced myosin polymerization at subthreshold Mg2+ concentrations in the presence of ATP, whereas the filament promoting action of KRP was enhanced by Mg2+. Moreover, the amino-terminal myosin binding fragment of caldesmon, like the whole protein, antagonizes Mg2+-induced myosin filament formation. In electron microscopy experiments, caldesmon shortened myosin filaments in the presence of Mg2+ and KRP, but N152 failed to change their appearance from control. Therefore, the primary distinction between caldesmon and KRP appears to be that caldesmon interacts with myosin to limit filament extension, while KRP induces filament propagation into defined polymers. Transfection of tagged-KRP into fibroblasts and overlay of fibroblast cytoskeletons with Cy3KRP demonstrated that KRP colocalizes with myosin structures in vivo. We propose a new model that through their independent binding to myosin and differential effects on myosin dynamics, caldesmon and KRP can, in concert, control the length and polymerization state of myosin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birukov KG, Schavocky JP, Shirinsky VP, Chibalina MV, Van Eldik LJ and Watterson DM (1998) Organization of the geneticloc us for chicken myosin light chain kinase is complex: multiple proteins are encoded and exhibit differential expression and localization. J Cell Biochem 7: 402-413.

    Article  Google Scholar 

  • Birukov KG, Stepanova OV, Nanaev AK and Shirinsky VP (1991) Expression of calponin in rabbit and human aortic smooth muscle cells. Cell Tissue Res 266: 579-584.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A (1984) Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J Biol Chem 259: 12,873-12,880.

    CAS  Google Scholar 

  • Collinge M, Matrisian PE, Zimmer WE, Shattuck RL, Lukas TJ, Van Eldik LJ and Watterson DM (1992) Structure and expression of a calcium-binding protein gene contained within a calmodulinregulated protein kinase gene. Mol CelI Biol 12: 2359-2371.

    CAS  Google Scholar 

  • Craig R, Smith R and Kendrick-Jones J (1983) Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302: 436-439.

    Article  PubMed  CAS  Google Scholar 

  • Deng JT, Van Lierop JE, Sutherland C and Walsh MP (2001) Ca2+-independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem 276: 16,365-16,373.

    CAS  Google Scholar 

  • Gillis JM, Cao ML and Godfraind-DeBecker A (1988) Density of myosin filaments in the rat anococcygeus muscle, at rest and in contraction. II. J Muscle Res Cell Motil 9: 18-28.

    Article  PubMed  CAS  Google Scholar 

  • Goncharova EA, Shirinsky VP, Shevelev AY, Marston SB and Vorotnikov AV (2001) Actomyosin cross-linking by caldesmon in non-muscle cells. FEBS Lett 497: 113-117.

    Article  PubMed  CAS  Google Scholar 

  • Hemric ME and Chalovich JM (1988) Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J Biol Chem 263: 1878-1885.

    PubMed  CAS  Google Scholar 

  • Hemric ME and Chalovich JM (1990) Characterization of caldesmon binding to myosin. J Biol Chem 265: 19,672-19,678.

    CAS  Google Scholar 

  • Herring BP and Smith AF (1996) Telokin expression is mediated by a smooth muscle cell-specific promoter. Am J Physiol 270: C1656-C1665.

    PubMed  CAS  Google Scholar 

  • Horowitz A, Trybus KM, Bowman DS and Fay FS (1994) Antibodies probe for folded monomeric myosin in relaxed and contracted smooth muscle. J Cell Biol 126: 1195-1200.

    Article  PubMed  CAS  Google Scholar 

  • Huber PA, Fraser ID and Marston SB (1995) Location of smoothmuscle myosin and tropomyosin binding sites in the C-terminal 288 residues of human caldesmon. Biochem J 312: 617-625.

    PubMed  CAS  Google Scholar 

  • Huber PA, Redwood CS, Avent ND, Tanner MJ and Marston SB (1993) Identification of functioning regulatory sites and a new myosin binding site in the C-terminal 288 amino acids of caldesmon expressed from a human clone. J Muscle Res Cell Motil 14: 385-391.

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE and Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173: 973-976.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe M and Hartshorne DJ (1984) Conformation-dependent proteolysis of smooth-muscle myosin. J Biol Chem 259: 11,639-11,642.

    CAS  Google Scholar 

  • Ikebe M and Reardon S (1988) Binding of caldesmon to smooth muscle myosin. J Biol Chem 263: 3055-3058.

    PubMed  CAS  Google Scholar 

  • Ito M, Dabrowska R, Guerriero Jr, V and Hartshorne DJ (1989) Identification in turkey gizzard of an acidic protein related to the C-terminal portion of smooth muscle myosin light chain kinase. J Biol Chem 264: 13,971-13,974.

    CAS  Google Scholar 

  • Katayama E and Ikebe M (1995) Mode of caldesmon binding to smooth muscle thin filament: possible projection of the amino-terminal of caldesmon from native thin filament. Biophys J 68: 2419-2428.

    Article  PubMed  CAS  Google Scholar 

  • Katayama E, Scott-Woo G and Ikebe M (1995) Effect of caldesmon on the assembly of smooth muscle myosin. J Biol Chem 270: 3919-3925.

    Article  PubMed  CAS  Google Scholar 

  • Krymsky MA, Kudryashov DS, Shirinsky VP, Lukas TJ, Watterson DM and Vorotnikov AV (2001) Phosphorylation of kinase-related protein (telokin) in tonicand phasicsmooth muscles. J Muscle Res Cell Motil 22: 425-437.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T-4. Nature 227: 680-685.

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Denault D and Marston S (1993) The caldesmon content of vertebrate smooth muscle. Biochim Biophys Acta 1203: 53-59.

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein measurement with the folin pnenol reagent. J Biol Chem 193: 265-275.

    PubMed  CAS  Google Scholar 

  • Marston S, Pinter K and Bennett P (1992) Caldesmon binds to smooth muscle myosin and myosin rod and crosslinks thick filaments to actin filaments. J Muscle Res Cell Motil 13: 206-218.

    Article  PubMed  CAS  Google Scholar 

  • Marston SB and Redwood CS (1991) The molecular anatomy of caldesmon. Biochem J 279: 1-16.

    PubMed  CAS  Google Scholar 

  • Masato T, Numata T, Katoh T, Morita F and Yazawa M (1997) Crosslinking of telokin to chicken gizzard smooth muscle myosin. J Biochem (Tokyo) 121: 225-230.

    CAS  Google Scholar 

  • Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A and Hosoya H (1999) ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett 451: 81-84.

    Article  PubMed  CAS  Google Scholar 

  • Okagaki T, Nakamura A, Suzuki T, Ohmi K and Kohama K (2000) Assembly of smooth muscle myosin by the 38k protein, a homologue of a subunit of pre-mRNA splicing factor-2. J Cell Biol 148: 653-664.

    Article  PubMed  CAS  Google Scholar 

  • Olney JJ, Sellers JR and Cremo CR (1996) Structure and function of the 10 S conformation of smooth muscle myosin. J Biol Chem 271: 20,375-20,384.

    CAS  Google Scholar 

  • Onishi H and Wakabayashi T (1982) Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail. J Biochem (Tokyo) 92: 871-879.

    CAS  Google Scholar 

  • Qi D, Mitchell RW, Burdyga T, Ford LE, Kuo KH and Seow CY (2002) Myosin light chain phosphorylation facilitates in vivo myosin filament reassembly after mechanical perturbation. Am J Physiol Cell Physiol 282: C1298-C1305.

    PubMed  CAS  Google Scholar 

  • Ruegg JC (1986) Calcium in Muscle Activation: A Comparative Approach. Springer-Verlag, Berlin.

    Google Scholar 

  • Sellers JR and Goodson HV (1995) Motor Proteins 2: myosin. Protein Profile 2: 1323-1423.

    PubMed  CAS  Google Scholar 

  • Sellers JR, Pato MD and Adelstein RS (1981) Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem 256: 13,137-13,142.

    CAS  Google Scholar 

  • Shirinsky VP, Biryukov KG, Vorotnikov AV and Gusev NB (1989) Caldesmon150, caldesmon77 and skeletal muscle troponin T share a common antigenic determinant. FEBS Lett 251: 65-68.

    Article  PubMed  CAS  Google Scholar 

  • Shirinsky VP, Vorotnikov AV, Birukov KG, Nanaev AK, Collinge M, Lukas TJ, Sellers JR and Watterson DM (1993) A kinase-related protein stabilizes unphosphorylated smooth muscle myosin mini-filaments in the presence of ATP. J Biol Chem 268: 16,578-16,583.

    CAS  Google Scholar 

  • Shirinsky VP, Vorotnikov AV and Gusev NB (1999) Caldesmon phosphorylation and smooth muscle contraction. In: Kohama K and Sasaki Y (eds) Molecular Mechanisms and Their Disorder in Smooth Muscle Contraction (pp. 59-79) LANDES Bioscience, Austin, TX USA.

    Google Scholar 

  • Silver DL, Vorotnikov AV, Watterson DM, Shirinsky VP and Sellers JR (1997) Sites of interaction between kinase-related protein and smooth muscle myosin. J Biol Chem 272: 25,353-25,359.

    Article  CAS  Google Scholar 

  • Sobue K and Sellers JR (1991) Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 266: 12,115-12,118.

    CAS  Google Scholar 

  • Somlyo AV, Butler TM, Bond M and Somlyo AP (1981) Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle. Nature 294: 567-569.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Onishi H, Takahashi K and Watanabe S (1978) Structure and function of chicken gizzard myosin. J Biochem (Tokyo) 84: 1529-1542.

    CAS  Google Scholar 

  • Suzuki H, Suzuki S and Watanabe S (1981) High concentrations of magnesium for formation of thick-filaments of chicken gizzard myosin. J Biochem (Tokyo) 89: 871-878.

    CAS  Google Scholar 

  • Trybus KM, Huiatt TW and Lowey S (1982) A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci USA 79: 6151-6155.

    Article  PubMed  CAS  Google Scholar 

  • Vorotnikov AV, Marston SB and Huber PA (1997) Location and functional characterization of myosin contact sites in smooth muscle caldesmon. Biochem J 328: 211-218.

    PubMed  CAS  Google Scholar 

  • Walker LA, MacDonald JA, Liu X, Nakamoto RK, Haystead TA, Somlyo AV and Somlyo AP (2001) Site-specific phosphorylation and point mutations of telokin modulate its Ca2+-desensitizing effect in smooth muscle. J Biol Chem 276: 24,519-24,524.

    CAS  Google Scholar 

  • Watterson DM, Collinge M, Lukas TJ, Van Eldik LJ, Birukov KG, Stepanova OV and Shirinsky VP (1995) Multiple gene products are produced from a novel protein kinase transcription region. FEBS Lett 373: 217-220.

    Article  PubMed  CAS  Google Scholar 

  • Watterson DM, Schavocky JR, Guo L, Weiss C, Chlenski A, Shirinsky VP, Van Eldik LJ and Haiech J (1999) Analysis of the kinaserelated protein gene found at human chromosome 3q21 in a multigene cluster: organization, expression, alternative splicing, and polymorphicmarker. J Cell Biochem 75: 481-491.

    Article  PubMed  CAS  Google Scholar 

  • Xu JQ, Gillis JM and Craig R (1997) Polymerization of myosin on activation of rat anococcygeus smooth muscle. J Muscle Res Cell Motil 18: 381-393.

    Article  PubMed  CAS  Google Scholar 

  • Xu JQ, Harder BA, Uman P and Craig R (1996) Myosin filament structure in vertebrate smooth muscle. J Cell Biol 134: 53-66.

    Article  PubMed  CAS  Google Scholar 

  • Yamakita Y, Yamashiro S and Matsumura F (1992) Characterization of mitotically phosphorylated caldesmon. J Biol Chem 267: 12,022-12,029.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, D.S., Vorotnikov, A.V., Dudnakova, T.V. et al. Smooth muscle myosin filament assembly under control of a kinase-related protein (KRP) and caldesmon. J Muscle Res Cell Motil 23, 341–351 (2002). https://doi.org/10.1023/A:1022086228770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022086228770

Keywords

Navigation