Skip to main content
Log in

NOBEL LECTURE: Protein Synthesis, Proteolysis, and Cell Cycle Transitions

  • Published:
Bioscience Reports

Abstract

The discovery of the role(s) of protein synthesis and degradation in the operation of the cell cycle is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Borsook, H. (1966) Early development of the echinoid egg compared with erythropoiesis. Biol. Rev. 41:259-274.

    Google Scholar 

  2. Dintzis, H. M. (1961) Assembly of the peptide chains of haemoglobin. Proc Natl. Acad. Sci USA 48:247-261.

    Google Scholar 

  3. Hunt, T., Hunter, T. and Munro, A. (1968) Control of haemoglobin synthesis: distribution of ribosomes on the messenger RNA for alpha and beta chains. J. Mol. Biol. 36:31-45.

    Google Scholar 

  4. Hunt, R. T., Hunter, A. R., and Munro, A. J. (1968) Control of haemoglobin synthesis: a difference in the size of the polysomes making alpha and beta chains. Nature 220:481-483.

    Google Scholar 

  5. Lodish, H. E. and Jacobsen, M. (1972) Regulation of hemoglobin synthesis. Equal rates of translation and termination of α-and β-globin chains. J. Biol. Chem. 247:3622-3629.

    Google Scholar 

  6. Jackson, R. and Hunter, T. (1970) Role of methionine in the initiation of haemoglobin synthesis. Nature 227:672-676.

    Google Scholar 

  7. Zucker, W. V and Schulman H. M. (1968) Stimulation of globin chain initiation by hemin in the reticulocyte cell-free system. Proc Natl. Acad. Sci. USA 59:582-589.

    Google Scholar 

  8. Maxwell, C. R. and Rabinovitz, M. (1969) Evidence for an inhibitor in the control of globin synthesis by hemin in a reticulocyte lysate. Biochem. Biophys. Res. Commun. 35:79-85.

    Google Scholar 

  9. Kosower, N. S., Vanderhoff, G. A., Benerofe, B., Hunt, T., and Kosower, E. M. (1975) Inhibition of protein synthesis by glutathione disulfide in the presence of glutathione. Biochem. Biophys. Res. Commun. 45:816-812.

    Google Scholar 

  10. Jackson, R. J., Herbert, P., Campbell, E. A. and Hunt, T. (1983) The roles of sugar phosphates and thiol-reducing systems in the control of reticulocyte protein synthesis. Eur. J. Biochem. 131:313-324.

    Google Scholar 

  11. Hunt, T., Herbert, P., Campbell, E. A., Delidakis, C., and Jackson, R. J. (1983) The use of affinity chromatography on 2′-5′ADP-Sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur. J. Biochem. 131:303-311.

    Google Scholar 

  12. Hunt, T. and Ehrenfeld, E. (1971) Cytoplasm from poliovirus-infected HeLa cells inhibits cell-free haemoglobin synthesis. Nature New Biol. 230:91-94.

    Google Scholar 

  13. Ehrenfeld, E. and Hunt, T. (1971) Double-stranded poliovirus RNA inhibits initiation of protein synthesis by reticulocyte lysates. Proc Natl. Acad. Sci. USA 68:1075-1078.

    Google Scholar 

  14. Pelham, H. R. and Jackson, R. J. (1976) An efficient mRNA dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:247-256.

    Google Scholar 

  15. Hunter, T., Hunt, T., Jackson, R. J., and Robertson, H. D. (1975) The characteristics of inhibition of protein synthesis by double-stranded RNA in reticulocyte lysates. J. Biol. Chem. 250:409-417.

    Google Scholar 

  16. Darnbrough, C. H., Legon, S., Hunt, T., and Jackson, R. J. (1973) Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl transfer RNA to the 40S ribosomal subunit. J. Mol. Biol. 76:379-403.

    Google Scholar 

  17. Legon, S., Brayley, A., Hunt, T., and Jackson, R. J. (1974) The effect of cAMP and related compounds on the control of protein synthesis in reticulocyte lysates. Biochem. Biophys. Res. Commun. 56:745-752.

    Google Scholar 

  18. Farrell, P. J., Balkow, K, Hunt, T., Jackson, R. J., and Trachsel, H. (1977) Phosphorylation of initiation factor eIF-2 and the control of reticulocyte protein synthesis. Cell 11:187-200.

    Google Scholar 

  19. Hershko, A., Mamont, P., Shields, R., and Tomkins, G. M. (1971) Pleiotypic response. Nat. New Biol. 232:206-211.

    Google Scholar 

  20. Walker, A. I., Hunt, T., Jackson, R. J., and Anderson, C. W. (1985) Double-stranded DNA induces the phosphorylation of several proteins including the 90,000 mol.wt. heat-shock protein in animal cell extracts. EMBO J. 4:139-145.

    Google Scholar 

  21. Jackson, S. P., MacDonald, J. J., Lees-Miller, S., and Tjian, R. (1990) GC box binding induces phosphorylation of Spl by a DNA-dependent protein kinase. Cell 63:155-165.

    Google Scholar 

  22. Jackson, R.J., Cambell, E. A., Herbert, P., and Hunt, T. (1983) The preparation and properties of gel-filtered rabbit reticulocyte lysate protein synthesis systems. Eur. J. Biochem. 131:289-301.

    Google Scholar 

  23. Ballinger, D. and Hunt, T. (1981) Fertilization of sea urchin eggs is accompanied by 40S ribosomal subunit phosphorylation. Dev. Biol. 87:277-285.

    Google Scholar 

  24. Brandhorst, B. P. (1976) Two-dimensional gel patterns of protein synthesis before and after fertilization of sea urchin eggs. Dev. Biol. 52:310-317.

    Google Scholar 

  25. Rosenthal, E. T., Hunt, T., and Ruderman, J. V. (1980) Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula solidissima. Cell 20:487-494.

    Google Scholar 

  26. Wit, M. and Gerhart, J. C. (1980) Partial purification and characterization of the maturation promoting factor from eggs of Xenopus laevis. Dev. Biol. 79:465-477.

    Google Scholar 

  27. Murray, A. W. and Szostak, J. W. (1983) Construction of artificial chromosomes in yeast. Nature 305:189-193.

    Google Scholar 

  28. Gerhart, J., Wit, M., and Kirschner, M. (1984) Cell cycle dynamics of an M phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol. 98:1247-1255.

    Google Scholar 

  29. Evans, T., Hunt, T., and Youngblom, J. (1982) On the role of maternal mRNA in sea urchins: studies of a protein which appears to be destroyed at a particular point in each cell division cycle. Biol. Bull. 163:372.

    Google Scholar 

  30. Standart, N. M., Bray, S. J., George, E. L., Hunt, T., and Ruderman, J. V. (1985) The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs. J. Cell Biol. 100:1968-1976.

    Google Scholar 

  31. Evans, T., Rosenthal, E. T., Youngbloom, J., Distel, D., and Hunt, T. (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389-396.

    Google Scholar 

  32. Glotzer, M, Murray, A. W., and Kirschner, M. W. (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349:132-138.

    Google Scholar 

  33. Wagenaar E. B. (1983) The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo. Exp. Cell. Res. 144:393-403.

    Google Scholar 

  34. Hultin, T. (1961) The effect of puromycin on protein metabolism and cell division in fertilized sea urchin eggs. Experentia 17:410-411.

    Google Scholar 

  35. Rosenthal, E. T., Tansey, T. R., and Ruderman, J. V. (1983) Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J. Mol. Biol. 166:309-327.

    Google Scholar 

  36. Goelet, P., Lomonossoff, G. P., Butler, P. J., Akam, M. E., Gait, M. J., and Karn, J. (1982) Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad. Sci. USA. 79:5818-5822.

    Google Scholar 

  37. Minshull, J. and Hunt, T. (1986) The use of single-stranded DNA and RNase H to promote quantitative ''hybrid arrest of translation'' of mRNA/ DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res. 14:6433-6451.

    Google Scholar 

  38. Pines, J. and Hunt, T. (1987) Molecular cloning and characterization of the mRNAfor cyclin from sea urchin eggs. EMBO J. 6:2987-2995.

    Google Scholar 

  39. Hunt, T., Luca, E. C., and Ruderman, J. V. (1992) The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J. Cell Biol. 116:707-724.

    Google Scholar 

  40. Swenson, K. I., Farrell, K. M., and Ruderman, J. V. (1986) The clam embryo protein eyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell 47:861-870.

    Google Scholar 

  41. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220:719-721.

    Google Scholar 

  42. Poon, R. Y, Yamashita, K, Adamczewski, J. P., Hunt, T., and Shuttleworth, J. (1993) The cdc2-related protein p40MOl5 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2 . EMBO J. 12:3123-3132.

    Google Scholar 

  43. Hochegger, H., Klotzbücher, A., Kirk, J., Howell, M., le Guellec, K., Fletcher, K., Duncan, T., Sohail, M., and Hunt, T. (2001) New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation. Development 128:3795-3807.

    Google Scholar 

  44. Pines, J. and Hunter, T. (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2 . Cell 58:833-846.

    Google Scholar 

  45. Standart, N., Minshull, J., Pines, J., and Hunt, T. (1987) Cyclin synthesis, modification, and destruction during meiotic maturation of the starfish oocyte. Dev. Biol. 124:248-258.

    Google Scholar 

  46. Booher, R. and Beach, D. (1988) Involvement of cdc13+ in mitotic control in Schizosaccharomycespombe: possible interaction of the gene product with microtubules. EMBO J. 7:2321-2327.

    Google Scholar 

  47. Solomon, M., Booher, R., Kirschner, M. and Beach, D (1988) Cyclin in fission yeast. Cell 54:738-740.

    Google Scholar 

  48. Goebl, M and Byers, B. (1988) Cyclin in fission yeast. Cell 54:738-740.

    Google Scholar 

  49. Lohka, M. J., Hayes, M. K and Mallet, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85:3009-3013.

    Google Scholar 

  50. Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T., and Mallet, J. L. (1990) Cyclin is a component of maturation promoting factor from Xenopus. Cell 60:487-494.

    Google Scholar 

  51. Minshull, J., Blow, J., and Hunt, T. (1989) Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56:947-956.

    Google Scholar 

  52. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339:275-278.

    Google Scholar 

  53. Murray, A. W., Solomon, M. J. and Kirschner, M. W. (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339:280-286.

    Google Scholar 

  54. Dore´e, M. and Hunt, T. (2002) From Cdc2 to Cdkl: when did the cell cycle kinase join its cyclin partner? J. Cell Sci. 115:2461-2464.

    Google Scholar 

  55. Labbe, J. C., Capony, J. P., Caput, D., Cavadore, J. C., Derancourt, J., Kaghad, M., Lelias, J. M., Picard, A., and Dorée, M. (1989) MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 8:3053-3058.

    Google Scholar 

  56. Fesquet D, Labbe, J. C., Derancourt, J., Capony, J. P., Galas, S., Girard, F., Lorca, T., Shuttleworth, J., Dorée, M., and Cavadore, J. C. (1993) The M015 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclindependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111-3121.

    Google Scholar 

  57. Fry, B. J. and Gross, P. R. (1970) Patterns and rates of protein synthesis in sea urchin embryos. II. The calculation of absolute rates. Dev Biol. 21:125-146.

    Google Scholar 

  58. Fry, B. J. and Gross, P. R. (1970) Patterns and rates of protein synthesis in sea urchin embryos. 1. Uptake and incorporation of amino acids during the first cleavage cycle. Dev. Biol. 21:105-124.

    Google Scholar 

  59. Kolodny, G. M. and Gross, P. R. (1969) Changes in patterns of protein synthesis during the mammalian cell cycle. Exp. Cell Res. 56:117-121.

    Google Scholar 

  60. Brandhorst, B. P. (1976) Two-dimensional patterns of protein synthesis before and after fertilization of sea urchin eggs. Dev. Biol. 52:310-317.

    Google Scholar 

  61. O'Farrell P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-40021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, T. NOBEL LECTURE: Protein Synthesis, Proteolysis, and Cell Cycle Transitions. Biosci Rep 22, 465–486 (2002). https://doi.org/10.1023/A:1022077317801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022077317801

Navigation