Wetlands Ecology and Management

, Volume 11, Issue 1–2, pp 97–107 | Cite as

Spontaneous revegetation of mined peatlands: An useful restoration tool?


The recent development of peatlandrestoration activities indicates thatmodern peat mining techniques seriouslyhamper the natural capacity of bogecosystems to regenerate after adisturbance. However, some plants have theability to colonize dry peat deposits, andseem to help stabilize the soil surface andfacilitate the establishment of other plantspecies. In this paper, we review studiesregarding the spontaneous regeneration ofombrotrophic peatlands. There are numerousexamples throughout North America andEurope showing that spontaneousrevegetation of mined peatlands by typicalbog plants, and particularly by Sphagnum species, is possible. However,this phenomenon is much more common inblock-cut peatlands than in vacuum-minedsites. The slow recovery of vacuum-minedpeatlands compared to block-cut sites isprobably related to intense drainagenecessary for the use of tractor-drawnvacuum machines. There are some cases,however, where the spontaneous revegetationof vacuum-mined sites is successful,particularly for vascular plants. Thesesites are mainly dominated by cotton-grass(Eriophorum vaginatum L.). Itseems that the microclimatic conditionscreated by cotton-grass tussocks improveestablishment conditions for other vascularand non-vascular plants. Restorationactivities should be minimal in minedpeatlands already invaded by cotton-grass,and spontaneous revegetation processescould and should be integrated intopeatland restoration programs.

cotton-grass Eriophorum vaginatum Europe mire North America Québec regeneration restoration spontaneous revegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertram, R. 1988. Pflanzengesellschaften der Torfstiche Nordniedersächsischer Moore und die Abhängigkeit dieser Vegetationseinheiten von der Wasserqualität. Dissertationes Botanicae 126: 1–192.Google Scholar
  2. Bérubé, M.-È. and Lavoie, C. 2000. The natural revegetation of a vacuum-mined peatland: eight years of monitoring. Can. Field-Nat. 114: 279–286.Google Scholar
  3. Boudreau, S. and Rochefort, L. 1999. Établissement de sphaignes réintroduites sous diverses communautés végétales recolonisant les tourbières après l'exploitation. Écologie 30: 53–62.Google Scholar
  4. Bugnon, J.-L., Rochefort, L. and Price, J.S. 1997. Field experiment of Sphagnum reintroduction on a dry abandoned peatland in eastern Canada. Wetlands 17: 513–517.Google Scholar
  5. Buttler, A., Grosvernier, P. and Matthey, Y. 1998. Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J. Appl. Ecol. 35: 800–810.Google Scholar
  6. Buttler, A., Warner, B.G., Grosvernier, P. and Matthey, Y. 1996. Vertical patterns of testate amoebae (Protozoa: Rhizopoda) and peat-forming vegetation on cutover bogs in the Jura, Switzerland. New Phytol. 134: 371–382.Google Scholar
  7. Campbell, D.R. 2002. Comprendre la mécanique du processus de recolonisation végétale des tourbières exploitées. Ph.D. Dissertation, Université Laval, Sainte-Foy, Canada.Google Scholar
  8. Campbell, D.R., Lavoie, C. and Rochefort, L. 2002. Wind erosion and surface stability in abandoned milled peatlands. Can. J. Soil Sci. 82: 85–95.Google Scholar
  9. Campeau, S. and Rochefort, L. 1996. Sphagnum regeneration on bare peat surface: field and greenhouse experiments. J. Appl. Ecol. 33: 599–608.Google Scholar
  10. Desrochers, A., Lavoie, C., Pellerin, S. and Poulin, M. 2000. Bog conservation: A Canadian perspective. In: Rochefort, L. and Daigle, J.-Y. (eds.), Proc. 11th Int. Peat Congress. pp. 1027– 1033. Canadian Society of Peat and Peatlands and International Peat Society, Québec City, Québec, Canada.Google Scholar
  11. Desrochers, A., Rochefort, L. and Savard, J.-P.L. 1998. Avian recolonization of eastern Canadian bogs after peat mining. Can. J. Zool. 76: 989–997.Google Scholar
  12. Famous, N.C., Spencer, M. and Nilsson, H. 1991. Revegetation patterns in harvested peatlands in central and eastern North America. In: Grubich, D.N. and Malterer, T.J. (eds), Proc. Int. Peat Symp. pp. 48–66. International Peat Society, Duluth, Minnesota, USA.Google Scholar
  13. Ferland, C. and Rochefort, L. 1997. Restoration techniques for Sphagnum-dominated peatlands. Can. J. Botany 75: 1110–1118.Google Scholar
  14. Gebauer, R.L.E., Reynolds, J.F. and Tenhunen, J.D. 1995. Growth and allocation of the arctic sedges Eriophorum angustifolium and E. vaginatum: effects of variable soil oxygen and nutrient availability. Oecologia 104: 330–339.Google Scholar
  15. Giller, K.E. and Wheeler, B.D. 1988. Acidification and succession in a flood-plain mire in the Norfolk Broadland, U.K. J. Ecology 76: 849–866.Google Scholar
  16. Girard, M. 2000. La régénération naturelle d'écosystèmes fortement perturbés: le cas d'une tourbière exploitée du Bas-Saint-Laurent (Québec). M.A. Thesis, Université Laval, Sainte-Foy, Québec, Canada.Google Scholar
  17. Green, P.E. 1983. Natural Revegetation of Mined Peatlands in Northern Minnesota. M.Sc. Thesis, University of Minnesota, St. Paul, Minnesota, USA.Google Scholar
  18. Grosvernier, P. 1996. Stratégie et génie écologique des sphaignes (Sphagnum sp.) dans la restauration spontanée des marais jurassiens suisses. Une approche expérimentale. Ph.D. Dissertation, Université de Neuchâtel, Neuchâtel, Switzerland.Google Scholar
  19. Grosvernier, P., Matthey, Y. and Buttler, A. 1995. Microclimate and physical properties of peat: new clues to the understanding of bog restoration processes. In: Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A. (eds.), Restoration of Temperate Wetlands. pp. 435–450. John Wiley & Sons, Chichester, UK.Google Scholar
  20. Grosvernier, P., Matthey, Y. and Buttler, A. 1997. Growth potential of three Sphagnum species in relation to water table level and peat properties with implications for their restoration in cut-over bogs. J. Appl. Ecol. 34: 471–483.Google Scholar
  21. Hayward, P.M. and Clymo, R.S. 1982. Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology. Proc. Royal Soc. London B215: 299–325.Google Scholar
  22. Jonsson-Ninniss, S. and Middleton, J. 1991. Effect of peat extraction on the vegetation in Wainfleet Bog, Ontario. Can. Field-Nat. 105: 505–511.Google Scholar
  23. Lavoie, C. and Rochefort, L. 1996. The natural revegetation of a harvested peatland in southern Québec: a spatial and dendroecological analysis. Écoscience 3: 101–111.Google Scholar
  24. Lavoie, C. and Saint-Louis, A. 1999. The spread of gray birch (Betula populifolia) in eastern Quebec: landscape and historical considerations. Can. J. Botany 77: 859–868.Google Scholar
  25. LeQuéré, D. and Samson, C. 1998. Peat bog restoration: industrial scale application. In: Malterer, T., Johnson, K. and Stewart, J. (eds.), Proc. 1998 Int. Peat Symp. pp. 69–72. International Peat Society, Duluth, Minnesota, USA.Google Scholar
  26. Le Quéré, D. and Samson, C. 2000. Peat bog restoration challenges at the industrial scale in Canada. In: Rochefort, L. and Daigle, J.-Y. (eds.), Proc. 11th Int. Peat Congress. pp. 705–709. Canadian Society of Peat and Peatlands and International Peat Society, Québec City, Québec, Canada.Google Scholar
  27. Lode, E. 2001. Natural mire hydrology in restoration of peatland functions. Acta Universitatis Agriculturae Sueciae, Silvestria 234. Uppsala, Sweden.Google Scholar
  28. Lütt, S. 1992. Produktionsbiologische Untersuchungen zur Sukzession der Torfstichvegetation in Schleswig-Holstein. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg, Heft 46, Kiel, Germany.Google Scholar
  29. Marcoux, K. 2000. Les invasions de linaigrette (Eriophorum vaginatum L.): aide ou frein à la restauration des tourbières? M.ATDR Thesis, Université Laval, Sainte-Foy, Québec, Canada.Google Scholar
  30. Matthey, Y. 1996. Conditions écologiques de la régénération spontanée du Sphagnion magellanici dans le Jura suisse. Typologie, pédologie, hydrodynamique et micrométéorologie. Ph.D. Dissertation, Université de Neuchâtel, Neuchâtel, Switzerland.Google Scholar
  31. Meade, R. 1992. Some early changes following the rewetting of a vegetated cutover peatland surface at DanesMoss, Cheshire, UK, and their relevance to conservation management. Biol. Conserv. 61: 31–40.Google Scholar
  32. Money, R.P. 1995. Re-establishment of a Sphagnum dominated flora on cut-over lowland raised bogs. In: Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A. (eds.), Restoration of Temperate Wetlands. pp. 405–422. John Wiley & Sons, Chichester, UK.Google Scholar
  33. Price, J.S. 1996. Hydrology and microclimate of a partly restored cutover bog, Québec. Hydrol. Proc. 10: 1263–1272.Google Scholar
  34. Price, J.S., Rochefort, L. and Quinty, F. 1998. Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover and Sphagnum regeneration. Ecol. Eng. 10: 293– 312.Google Scholar
  35. Price, J.S. and Whitehead, G.S. 2001. Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21: 32–40.Google Scholar
  36. Quinty, F. and Rochefort, L. 2000. Bare peat substrate instability in peatland restoration: problems and solutions. In: Rochefort, L. and Daigle, J.-Y. (eds.), Proc. 11th Int. Peat Congress. pp. 751– 756. Canadian Society of Peat and Peatlands and International Peat Society, Québec City, Québec, Canada.Google Scholar
  37. Robert, E.C., Rochefort, L. and Garneau, M. 1999. Natural revegetation of two block-cut mined peatlands in eastern Canada. Can. J. Botany 77: 447–459.Google Scholar
  38. Rochefort, L. 2000. Sphagnum: a keystone genus in habitat restoration. Bryologist 103: 503–508.Google Scholar
  39. Rochefort, L., Quinty, F., Campeau, S., Vitt, D.H., Johnson, K.W. and Malterer, T.J. (this issue) North American approach to peatland restoration. Wetlands Ecology and Management.Google Scholar
  40. Rowlands, R.G. and Feehan, J. 2000. The ecological future of industrially milled cutaway peatlands in Ireland. Aspects Appl. Biol. 58: 263–270.Google Scholar
  41. Royer, J.M., Vadam, J.C., Gillet, F. and Aumonier, M.F. 1978. Étude phytosociologique des tourbières acides et alcalines du Haut107 Doubs. Réflexions sur leur régénération et leur genèse. Centre universitaire d'études régionales Besançon 2: 109–185.Google Scholar
  42. Salonen, V. 1987. Relationship between the seed rain and the establishment of vegetation in two areas abandoned after peat harvesting. Holarctic Ecol. 10: 171–174.Google Scholar
  43. Salonen, V. 1990. Early plant succession in two abandoned cut-over peatland areas. Holarctic Ecol. 13: 217–223.Google Scholar
  44. Salonen, V. 1994. Revegetation of harvested peat surfaces in relation to substrate quality. J. Veg. Sci. 5: 403–408.Google Scholar
  45. Salonen, V. and Laaksonen, M. 1994. Effects of fertilization, liming, watering and tillage on plant colonization of bare peat surfaces. Annales Botanici Fennici 31: 29–36.Google Scholar
  46. Salonen, V., Penttinen, A. and Särkkä, A. 1992. Plant colonization of a bare peat surface: population changes and spatial patterns. J. Veg. Sci. 3: 113–118.Google Scholar
  47. Salonen, V. and Setälä, H. 1992. Plant colonization of bare peat surface: relative importance of seed availability and soil. Ecography 15: 199–204.Google Scholar
  48. Schouwenaars, J.M. 1988. The impact of water management upon groundwater fluctuations in a disturbed bog relict. Agric. Water Manag. 14: 439–449.Google Scholar
  49. Schouwenaars, J.M. 1993. Hydrological differences between bogs and bog-relicts and consequences for bog restoration. Hydrobiologia 265: 217–224.Google Scholar
  50. Smart, P.J., Wheeler, B.D. and Willis, A.J. 1989. Revegetation of peat excavations in a derelict raised bog. New Phytol. 111: 733– 748.Google Scholar
  51. Soro, A., Sundberg, S. and Rydin, H. 1999. Species diversity, niche metrics and species associations in harvested and undisturbed bogs. J. Veg. Sci. 10: 549–560.Google Scholar
  52. Tuittila, E.-S., Rita, H., Vasander, H. and Laine, J. 2000. Vegetation patterns around Eriophorum vaginatum L. tussocks in a cut-away peatland in southern Finland. Can. J. Botany 78: 47–58.Google Scholar
  53. Van Seters, T.E. and Price, J.S. 2001. The impact of peat harvesting and natural regeneration on the water balance of an abandoned cutover bog, Quebec. Hydrol. Proc. 15: 233–248.Google Scholar
  54. Weber, H.E. 1993. Steuerung und Beobachtung der Vegetation: Leegmoorprojekt. Naturschutz und Landschaftspflege Niedersachsens 29: 49–78.Google Scholar
  55. Wein, R.W. and MacLean, D.A. 1973. Cotton grass (Eriophorum vaginatum) germination requirements and colonizing potential in the Arctic. Can. J. Botany 51: 2509–2513.Google Scholar
  56. Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A. (eds.). 1995. Restoration of Temperate Wetlands. John Wiley & Sons, Chichester, UK.Google Scholar
  57. White, J.M. 1930. Re-colonisation after peat cutting. Royal Irish Acad. Proc. 39B: 453–476.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • C. Lavoie
    • 1
  • P. Grosvernier
    • 2
  • M. Girard
    • 1
  • K. Marcoux
    • 1
  1. 1.Centre de recherche en aménagement et en développementUniversité LavalSainte-FoyCanada
  2. 2.LIN'eco, ReconvilierSwitzerland

Personalised recommendations