Skip to main content
Log in

An Experimental Rig to Investigate Fatigue Crack Growth Under Dynamic Loading

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A novel experimental rig capable of generating a versatile dynamic loading has been designed and tested to overcome the shortcomings of conventional fatigue testing machines such as the difficulty in providing zero crossing aperiodic loading. The main principle of this new design is based on two, single degree of freedom based excited oscillators, where inertial forces act on a specially designed specimen. By changing the natural frequency of the oscillator, the extent of the preloads and pattern of the excitation signal on the shaker, the rig provides a new and robust means of fatigue testing, particularly for aperiodic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahim, O.N.L. and Brandon, J.A., ‘A piecewise linear approach for the modelling of a breathing crack’, in: 12th International Seminar On Modal Analysis, Leuven, Belgium, 1992, pp. 417-431.

  2. British Standard, ‘Method for determination of KIC, critical CTOD and critical J values of metallic materials’, in: Fracture Mechanics Toughness Tests, British Standard BS7448, Part 1, 1991.

  3. Chati, M.R. and Mukherjee, S., ‘Model analysis of a cracked beam’, J. Sound Vib. 207(2) (1997) 249-270.

    Google Scholar 

  4. Chondros, T.G., Dimarogonas, A.D. and Yao, J., ‘Longitudinal vibration of a bar with a breathing crack’, Eng. Fract. Mech. 61 (1998a) 503-518.

    Google Scholar 

  5. Chondros, T.G., Dimarogonas, A.D. and Yao, J., ‘Longitudinal vibration of a continuous cracked bar’, Eng. Fract. Mech. 61 (1998b) 593-606.

    Google Scholar 

  6. Chondros, T.G., Dimarogonas, A.D. and Yao, J., ‘A continuous cracked beam vibration theory’, J. Sound Vib. 215(1) (1998c) 17-34.

    Google Scholar 

  7. Christides, S. and Barr, A.D.S., ‘One-dimensional theory of cracked Bernoulli-Euler beams’. Int. J. Mech. Sci. 26 (1984) 639-648.

    Google Scholar 

  8. Chu, Y.C. and Shen, M.-H.H., ‘Analysis of forced bilinear oscillators and the application to cracked beam dynamics’, AIAA J. 30(10) (1992) 2512-2519.

    Google Scholar 

  9. Collins, K.R., Plaut, R.H. and Wauer, J., ‘Free and forced longitudinal vibrations of a cantilever bar with a crack’, J. Vib. Acoust. 114 (1992) 171-177.

    Google Scholar 

  10. Dentsoras, A.J. and Dimarogonas, A.D., ‘Resonance controlled fatigue crack propagation’, Eng. Fract. Mech. 17(4) (1983a) 381-386.

    Google Scholar 

  11. Dentsoras, A.J. and Dimarogonas, A.D., ‘Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations’, Int. J. Fracture 23 (1983b) 15-22.

    Google Scholar 

  12. Dentsoras, A.J. and Dimarogonas, A.D., ‘Resonance controlled fatigue crack propagation in cylindrical shafts under combined loading’, in: ASME Winter Annual Meeting, Boston, 1983c.

  13. Dentsoras, A.J. and Dimarogonas, A.D., ‘Fatigue crack propagation in resonating structures’, Eng. Fract. Mech. 34(3) (1989) 721-728.

    Google Scholar 

  14. Dimarogonas, A.D. and Papadopoulos, C.A., ‘Vibration of cracked shafts in bending’, J. Sound Vib. 91(4) (1983) 583-593.

    Google Scholar 

  15. Emans, J., Dynamics of Controllable Piecewise Linear Oscillator, Meng Thesis, University of Aberdeen, Scotland, 1999, pp. 245-260.

    Google Scholar 

  16. Fernández-Sáez, J., Rubio, L. and Navarro, C., ‘Approximate calculation of the fundamental frequency for bending vibrations of cracked beams’, J. Sound Vib. 225(2) (1999) 345-352.

    Google Scholar 

  17. Francis, S.T., Ivan, E.M. and Rolland, T.H., Mechanical Vibrations: Theory and Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1978, pp. 78-80.

    Google Scholar 

  18. Friswell, M.L. and Penny, J., ‘A simple nonlinear model of a cracked beam’, in: Proc. 10th International Modal Analysis Conference, 1, San Diego, USA, 1992, pp. 516-521.

    Google Scholar 

  19. Frost, N.E., Marsh, K.J. and Pook, L.P., Metal Fatigue, Oxford University Press, London, 1974, pp. 245-260.

    Google Scholar 

  20. Gudmundson, P., ‘The dynamic behavior of slender structures with cross-sectional cracks’, J. Mech. Phys. Solids 31(4) (1983) 329-345.

    Google Scholar 

  21. Ibrahim, A., Ismail, F. and Martin, H.R., ‘Modelling of the dynamics of a continuous beam including nonlinear fatigue crack’, J. Modal Anal. 2 (1987) 76-82.

    Google Scholar 

  22. Irwin, G.R., ‘Analysis of stresses and strains near the end of a crack traversing a plate’, J. Appl. Mech.-T. ASME 24 (1957) 361-364.

    Google Scholar 

  23. Kirmsher, P.G., ‘The effect of discontinuities on the natural frequency of beams’, P. Am. Soc. Test. Mater. 44 (1944) 897-904.

    Google Scholar 

  24. Liebowitz, H., Vanderveldt, H. and Harris, D.W., ‘Carrying capacity of notched column’, Int. J. Solids Struct. 3 (1967) 489-500.

    Google Scholar 

  25. Paris, P.C., Gomez, M.P. and Anderson, W.E., ‘A rational theory of fatigue’, Trend Eng. 13(1) (1961) 9-14.

    Google Scholar 

  26. Petroski, H.J., ‘Simple static and dynamic models for the cracked elastic beam’, Int. J. Fracture 17(4) (1981) R71-R76.

    Google Scholar 

  27. Rizos, P.F., Aspragathos, N. and Dimarogonas, A.D., ‘Identification of crack location and magnitude in a cantilever beam from the vibration modes’, J. Sound Vib. 138(3) (1990) 381-388.

    Google Scholar 

  28. Shen, M.-H.H. and Chu, Y.C., ‘Vibrations of beams with a fatigue crack’ Computers and Structures 45(1) (1992) 379-393.

    Google Scholar 

  29. Shen, M.-H.H. and Pierre, C., ‘Free vibrations of beams with a single-edge crack’, J. Sound Vib. 170(2) (1994) 237-259.

    Google Scholar 

  30. Sih, G.C., ‘Strain energy density factor applied to mixed mode problems’, Eng. Fract. Mech. 10 (1974) 305-321.

    Google Scholar 

  31. Tada, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania, 1973.

    Google Scholar 

  32. Thomson, W.J., ‘Vibration of slender bars with discontinuities in stiffness’, J. Appl. Mech.-T. ASME 71 (1949) 203-207.

    Google Scholar 

  33. Warburton, G.B., ‘Letter to the Editor’, Int. J. Mech. Sci. 29 (1987) 443-446.

    Google Scholar 

  34. Wiercigroch, M. and de Kraker, B. (eds), Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities, World Scientific, London, New York, Singapore, 2000.

    Google Scholar 

  35. Yuen, M.F., ‘A numerical study of the eigenparameters of a damaged cantilever’, J. Sound Vib. 103 (1985) 301-310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foong, CH., Wiercigroch, M. & Deans, W.F. An Experimental Rig to Investigate Fatigue Crack Growth Under Dynamic Loading. Meccanica 38, 19–31 (2003). https://doi.org/10.1023/A:1022063116312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022063116312

Navigation