Skip to main content
Log in

Sex and the Developing Brain: Suppression of Neuronal Estrogen Sensitivity by Developmental Androgen Exposure

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The developmental effects of androgen play a central role in sexual differentiation of the mammalian central nervous system. The cellular mechanisms responsible for mediating these effects remain incompletely understood. A considerable amount of evidence has accumulated indicating that one of the earliest detectable events in the mechanism of sexual differentiation is a selective and permanent reduction in estrogen receptor concentrations in specific regions of the brain. Using quantitative autoradiographic methods, it has been possible to precisely map the regional distribution of estrogen receptors in the brains of male and female rats, as well as to study the development of sexual dimorphisms in receptor distribution. Despite previous data suggesting that the left and right sides of the brain may be differentially responsive to early androgen exposure, there is no significant right-left asymmetry in estrogen receptor distribution, in either sex. Significant sex differences in receptor density are, however, observed in several regions of the preoptic area, the bed nucleus of the stria terminalis and the ventromedial nucleus of the hypothalamus, particularly in its most rostral and caudal aspects. In the periventricular preoptic area of the female, highest estrogen receptor density occurs in the anteroventral periventricular region: binding in this region is reduced by approximately 50% in the male, as compared to the female. These data are consistent with the hypothesis that androgen-induced defeminization of feminine behavioral and neuroendocrine responses to estrogen may involve selective reductions in the estrogen sensitivity of critical components of the neural circuitry regulating these responses, mediated in part through a reduction in estrogen receptor biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bardin, C. W., and Catterall, J. F. 1981. Testosterone: A major determinant of extragenital sexual dimorphism. Science 211: 1285–1294.

    Google Scholar 

  2. Goy, R. W., and McEwen, B. S. 1980. Sexual Differentiation of the Brain. MIT. Press. Cambridge, Mass.

    Google Scholar 

  3. Wilson, J. D., George, F. W., and Griffin, J. E. 1981. The hormonal control of sexual development. Science 211:1278–1284.

    Google Scholar 

  4. Rainbow, T. C., Parsons, B., and McEwen, B. S. 1982. Sex differences in rat brain oestrogen and progestin receptors. Nature (Lond.). 300:648–649.

    Google Scholar 

  5. Parsons, B., Rainbow, T. C., and McEwen, B. S. 1984. Organizational effects of testosterone via aromatization on feminine reproductive behavior and neural progestin receptors in rat brain. Endocrinology 115:1412–1417.

    Google Scholar 

  6. Naftolin, F., Ryan, K. J., Davies, I. J., Reddy, V. V., Flores, F., Petro, Z., Kuhn, M., White, R. J., Takaoka, Y., and Wolin, L. 1975. The formation of estrogens by central neuroendocrine tissue. Rec. Prog. Horm. Res. 31:295–319.

    Google Scholar 

  7. Lieberburg, I., and McEwen, B. S. 1975. Estradiol-17β: a metabolite of testosterone recovered in cell nuclei from limbic areas of neonatal rat brains. Brain Res. 85:165–170.

    Google Scholar 

  8. Lieberburg, I., Wallach, G., and McEwen, B. S. 1977. The effects of an inhibitor of aromatization (1,4,6-androstatriene-3,17-dione) and an anti-estrogen (Cl-628) on in vivo formed testosterone metabolites recovered from neonatal rat brain tissues and purified cell nuclei. Implications for sexual differentiation of the rat brain. Brain Res. 128:176–181.

    Google Scholar 

  9. McEwen, B. S., Lieberburg, I., Chaptal, C., and Krey, L. 1977. Aromatization: Important for Sexual Differentiation of the Neonatal Rat Brain. Horm. Behav. 9:249–263.

    Google Scholar 

  10. Brown, T. J., Sharma, M., Heisler, L. E., Karsan, N., Walters, M. J., and MacLusky, N. J. 1995. In vitro labeling of gonadal steroid hormone receptors in brain tissue sections. Steroids 60: 726–737.

    Google Scholar 

  11. Yuan, H., Bowlby, D. A., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1995. Distribution of Occupied and Unoccupied Estrogen Receptors in the Rat Brain: Effects of Physiological Levels of Gonadal Steroids. Endocrinology 136:96–105.

    Google Scholar 

  12. MacLusky, N. J., Yuan, H., Bowlby, D., Hochberg, R. B., and Brown, T. J. 1994. In Vitro Autoradiography for Steroid Receptors. In Neurobiology of Steroids. E. R. de Kloet and W. Sutanto, editors. Academic Press, New York. 79–95.

    Google Scholar 

  13. MacLusky, N. J., Brown, T. J., Jones, E., Leranth, C., and Hochberg, R. B. 1990. Autoradiographic and Microchemical Methods for Quantitation of Steroid Receptors. In Methods in Neurosciences Vol. 3, Quantitative and Qualitative Microscopy. P. M. Conn, editor. Academic Press, New York. 3–35.

    Google Scholar 

  14. Sheridan, P. J., Sar, M., and Stumpf, W. E. 1974. Estrogen and androgen distribution in the brain of neonatal rats. Anat. Neuroendo. Int. Conf. Neurobiology. of CNS-Hormone.

  15. Sheridan, P. J. 1979. Estrogen binding in the neonatal neocortex. Brain Res. 178:201–206.

    Google Scholar 

  16. Lieberburg, I., MacLusky, N. J., and McEwen, B. S. 1980. Androgen receptors in the perinatal rat brain. Brain Res. 196:123–138.

    Google Scholar 

  17. Barley, J., Ginsburg, M., Greenstein, B. D., MacLusky, N. J., and Thomas, P. J. 1974. A receptor mediating sexual differentiation. Nature (Lond.). 252:259–260.

    Google Scholar 

  18. Brown, T. J., Hochberg, R. B., Naftolin, F., and MacLusky, N. J. 1994. Pubertal development of estrogen receptors in the rat brain. Molecular & Cellular Neurosciences 5:475–483.

    Google Scholar 

  19. Friedman, W. J., McEwen, B. S., Toran-Allerand, C. D., and Gerlach, J. L. 1983. Perinatal development of hypothalamic and cortical estrogen receptors in mouse brain: Methodological aspects. Brain Res. Dev. Brain Res. 11:19–27.

    Google Scholar 

  20. Gerlach, J. L., McEwen, B. S., Toran-Allerand, C. D., and Friedman, W. J. 1983. Perinatal development of estrogen receptors in mouse brain assessed by radioautography, nuclear isolation and receptor assay. Brain Res. 313:7–18.

    Google Scholar 

  21. Miranda, R. C., and Toran-Allerand, C. D. 1992. Developmental expression of estrogen receptor mRNA in the rat cerebral cortex: a nonisotopic in situ hybridization histochemistry study. Cereb. Cortex 2:1–15.

    Google Scholar 

  22. Toran-Allerand, C. D., Miranda, R. C., Hochberg, R. B., and MacLusky, N. J. 1992. Cellular variations in estrogen receptor mRNA translation in the developing brain: Evidence from combined [125I]estrogen autoradiography and non-isotopic in situ hybridization histochemistry. Brain Res. 576:25–41.

    Google Scholar 

  23. Toran-Allerand, C. D. 1991. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation. Psychoneuroendocrinology. 16:7–24.

    Google Scholar 

  24. Clemens, L. G., Hiroi, M., and Gorski, R. A. 1989. Induction and facilitation of female mating behavior in rats treated neonatally with low doses of testosterone propionate. Endocrinology 124:2074–2088.

    Google Scholar 

  25. Gorski, R. A., and Wagner, J. W. 1965. Gonadal activity and sexual differentiation of the hypothalamus. Endocrinology 73: 226–239.

    Google Scholar 

  26. Wilson, J. G., Hamilton, J. B., and Young, W. C. 1941. Influence of age and presence of the ovaries on reproductive function in rats injected with androgens. Endocrinology 29:784–789.

    Google Scholar 

  27. MacLusky, N. J., and Naftolin, F. 1981. Sexual differentiation of the central nervous system. Science 211:1294–1303.

    Google Scholar 

  28. McEwen, B. S., Lieberburg, I., Chaptal, C., Davis, P. G., Krey, L. C., MacLusky, N. J., and Roy, E. J. 1979. Attenuating the defeminization of the neonatal rat brain: Mechanisms of action of cyproterone acetate, 1,4,6-androsta-triene-3,17-dione and a synthetic progestin, R5020. Horm. Behav. 13:269–281.

    Google Scholar 

  29. Hart, B. L. 1969. Gonadal hormones and sexual reflexes in the female rat. Horm. Behav. 1:65–71.

    Google Scholar 

  30. Hart, B. L. 1979. Activation of sexual reflexes of male rats by dihydrotestosterone but not estrogen. Physiol. Behav. 23:107–109.

    Google Scholar 

  31. McEwen, B. S. 1981. Neural gonadal steroid interactions. Science 211:1303–1311.

    Google Scholar 

  32. Salaman, D. F. 1974. Androgen-induced sexual differentiation of the brain is blocked by inhibitors of DNA and RNA synthesis. Nature (Lond.). 247:109–112.

    Google Scholar 

  33. Williams, C. L. 1986. A reevaluation of the concept of separable periods of organizational and activational actions of estrogens in development of brain and behavior. Ann. N. Y. Acad. Sci. 474:282–292.

    Google Scholar 

  34. Williams, C. L., and Blaustein, J. D. 1988. Steroids induce hypothalamic progestin receptors and facilitate female sexual behavior in neonatal rats. Brain Res. 449:403–407.

    Google Scholar 

  35. Gorski, R. A. 1973. Perinatal effects of sex steroids on brain development and function. Prog. Brain Res. 39:149–163.

    Google Scholar 

  36. Davis, E. C., Shryne, J. E., and Gorski, R. A. 1996. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology 63: 142–148.

    Google Scholar 

  37. Arnold, A. P., and Gorski, R. A. 1984. Gonadal steroid induction of structural sex differences in the central nervous system. Ann. Rev. Neurosci. 7:413–442.

    Google Scholar 

  38. Toran-Allerand, C. D. 1985. On the genesis of sexual differentiation of the central nervous system: morphogentic consequences of steroidal exposure and possible role of alpha-fetoprotein. Prog. Brain Res. 61:63–97.

    Google Scholar 

  39. Allen, L. S., Hines, M., Shryne, J. E., and Gorski, R. A. 1989. Two sexually dimorphic cell groups in the human brain. J. Neurosci. 9:497–506.

    Google Scholar 

  40. Hofman, M. A., and Swaab, D. F. 1989. The sexually dimorphic nucleus of the preoptic area in the human brain: A comparative morphometric study. J. Anat. 164:55–72.

    Google Scholar 

  41. Swaab, D. F., and Fliers, E. 1985. A sexually dimorphic nucleus in the human brain. Science 228:1112–1115.

    Google Scholar 

  42. Toran-Allerand, C. D., Gerlach, J. L., and McEwen, B. S. 1980. Autoradiographic localization of 3H-estradiol related to steroid responsiveness in cultures of the newborn mouse hypothalamus and preoptic area. Brain Res. 184:517–522.

    Google Scholar 

  43. Toran-Allerand, C. D. 1980. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro. II. Morphological correlates and hormonal specificity. Brain Res. 189:413–427.

    Google Scholar 

  44. Toran-Allerand, C. D. 1981. Gonadal steroids and brain development: in vitro veritas. Trends. Neurosci. 118–121.

  45. Reisert, I., Han, V., Lieth, E., Toran-Allerand, D., Pilgrim, C., and Lauder, J. 1987. Sex steroids promote neurite growth in mesencephalic tyrosine hydroxylase immunoreactive neurons in vitro. Int. J. Dev. Neurosci. 5:91–98.

    Google Scholar 

  46. Nichizuka, M., and Arai, Y. 1981. Sexual dimorphism in synaptic organization in the amygdala and its dependence on neonatal hormone environment. Brain Res. 212:31–38.

    Google Scholar 

  47. Nichizuka, M., and Arai, Y. 1982. Synapse formation in response to estrogen in the medial amygdala developing in the eye. Proc. Natl. Acad. Sci. (USA) 79:7024–7026.

    Google Scholar 

  48. Toran-Allerand, C. D. 1982. Autoradiographic localization of 3H estradiol related to steroid responsiveness in cultures of the hypothalamus and preoptic area. Brain Res. 184:517–522.

    Google Scholar 

  49. Toran-Allerand, C. D., Ellis, L., and Pfenninger, K. H. 1988. Estrogen and insulin synergism in neurite growth enhancement in vitro: mediation of steroid effects by interactions with growth factors? Brain Res. 469:87–100.

    Google Scholar 

  50. Toran-Allerand, C. D. 1990. Neurite-like outgrowth from CNS explants may not always be of neuronal origin. Brain Res. 513: 353–357.

    Google Scholar 

  51. Toran-Allerand, C. D., Miranda, R. C., Bentham, W. D., Sohrabji, F., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1992. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. (USA) 89:4668–4672.

    Google Scholar 

  52. Toran-Allerand, C. D. 1996. Mechanisms of estrogen action during neural development: Mediation by interactions with the neurotrophins and their receptors? J. Steroid Biochem. Mol. Biol. 56:169–178.

    Google Scholar 

  53. Miranda, R. C., Sohrabji, F., and Toran-Allerand, D. 1994. Interactions of estrogen with the neurotrophins and their receptors during neural development. Horm. Behav. 28:367–375.

    Google Scholar 

  54. Miranda, R. C., Sohrabji, F., and Toran-Allerand, C. D. 1993. Neuronal colocalization of mRNAs for neurotrophins and their receptors in the developing central nervous system suggests a potential for autocrine interactions. Proc. Natl. Acad. Sci. (USA) 90:6439–6443.

    Google Scholar 

  55. Dickson, R. B., Thompson, E. W., and Lippman, M. E. 1990. Regulation of proliferation, invasion and growth factor synthesis in breast cancer by steroids. J. Steroid Biochem. Mol. Biol. 37: 305–316.

    Google Scholar 

  56. Dickson, R. B., and Lippman, M. E. 1987. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr. Rev. 8:29–43.

    Google Scholar 

  57. Stancel, G. M., Gardner, R. M., Kirkland, J. L., Lin, T. H., Lingham, R. B., Loose-Mitchell, D. S., Mukku, V. R., Orengo, C. A., and Verner, G. 1987. Interactions between estrogen and EGF in uterine growth and function. Adv. Exp. Med. Biol. 230:99–118.

    Google Scholar 

  58. Migliaccio, A., Pagano, M., De Goeij, C. C. J., Di Domenico, M., Castoria, G., Sluyser, M., and Auricchio, F. 1992. Phosphorylation and estradiol binding of estrogen receptor in hormone-dependent and hormone-independent GR mouse mammary tumors. Int. J. Cancer 51:733–739.

    Google Scholar 

  59. Denton, R. R., Koszewski, N. J., and Notides, A. C. 1992. Estrogen receptor phosphorylation. Hormonal dependence and consequence on specific DNA binding. J. Biol. Chem. 267:7263–7268.

    Google Scholar 

  60. Auricchio, F., Migliaccio, A., Castoria, G., Rotondi, A., Di Domenico, M., Pagano, M., and Nola, E. 1988. Phosphorylation of estradiol receptor on tyrosine and interaction of estradiol and glucocorticoid receptors with antiphosphotyrosine antibodies. Advances In Experimental Medicine & Biology 231:519–540.

    Google Scholar 

  61. Ignar-Trowbridge, D. M., Pimentel, M., Teng, C. T., Korach, K. S., and McLachlan, J. A. 1995. Cross talk between peptide growth factor and estrogen receptor signaling systems. Environ. Health Perspect. 103:35–38.

    Google Scholar 

  62. Ignar-Trowbridge, D. M., Teng, C. T., Ross, K. A., Parker, M. G., Korach, K. S., and McLachlan, J. A. 1993. Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol. Endocrinol. 7: 992–998.

    Google Scholar 

  63. Miranda, R., Sohrabi, F., Singh, M., and Toran-Allerand, C. D. 1996. Nerve Growth Factor (NGF) Regulation of Estrogen Receptors in Explant Cultures of the Developing Forebrain. J. Neurobiol. submitted

  64. Hutchison, J. B., Beyer, C., Green, S., and Wozniak, A. 1994. Brain formation of oestrogen in the mouse: Sex dimorphism in aromatase development. J. Steroid Biochem. Mol. Biol. 49:407–415.

    Google Scholar 

  65. Hutchison, J. B., Beyer, C., Hutchison, R. E., and Wozniak, A. 1995. Sexual dimorphism in the developmental regulation of brain aromatase. J. Steroid Biochem. Mol. Biol. 53:307–313.

    Google Scholar 

  66. Weisz, J., and Ward, I. L. 1980. Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses and neonatal offspring. Endocrinology 106:306–316.

    Google Scholar 

  67. Wennstrom, K. L., and Crews, D. 1995. Making males from females: the effects of aromatase inhibitors on a parthenogenetic species of whiptail lizard. General & Comparative Endocrinology 99:316–322.

    Google Scholar 

  68. Lahr, G., Maxson, S. C., Mayer, A., Just, W., Pilgrim, C., and Reisert, I. 1995. Transcription of the Y chromosomal gene, Sry, in adult mouse brain. Molecular Brain Res. 33:179–182.

    Google Scholar 

  69. Roselli, C. E., and Resko, J. A. 1984. Androgens regulate brain aromatase activity in adult male rats through a receptor mechanism. Endocrinology 114:2183–2189.

    Google Scholar 

  70. Roselli, C. E., Salisbury, R. L., and Resko, J. A. 1987. Genetic evidence for androgen-dependent and independent control of aromatase activity in the rat brain. Endocrinology 121:2205–2210.

    Google Scholar 

  71. Beyer, C., and Hutchison, J. B. 1997. Androgens stimulate the morphological maturation of embryonic hypothalamic aromatase-immunoreactive neurons in the mouse. Developmental Brain Res. 98:74–81.

    Google Scholar 

  72. Ovtscharoff, W., Eusterschulte, B., Zienecker, R., Reisert, I., and Pilgrim, C. 1992. Sex differences in densities of dopaminergic fibers and GABAergic neurons in the prenatal rat striatum. J. Comp. Neurol. 323:299–304.

    Google Scholar 

  73. Stewart, J., and Rajabi, H. 1994. Estradiol derived from testosterone in prenatal life affects the development of catecholamine systems in the frontal cortex in the male rat. Brain Res. 646:157–160.

    Google Scholar 

  74. Beyer, C., Eusterschulte, B., Pilgrim, C., and Reisert, I. 1992. Sex steroids do not alter sex differences in tyrosine hydroxylase activity of dopaminergic neurons in vitro. Cell Tissue Res. 270:547–552.

    Google Scholar 

  75. Sibug, R., Kuppers, E., Beyer, C., Maxson, S. C., Pilgrim, C., and Reisert, I. 1996. Genotype-dependent sex differentiation of dopaminergic neurons in primary cultures of embryonic mouse brain. Developmental Brain Res. 93:136–142.

    Google Scholar 

  76. Reisert, I., Lieb, K., Beyer, C., and Pilgrim, C. 1996. Sex differentiation of rat hippocampal GABAergic neurons. European Journal of Neuroscience 8:1718–1724.

    Google Scholar 

  77. Brown, T. J., Yu, J., Gagnon, M., Sharma, M., and MacLusky, N. J. 1996. Sex Differences in Estrogen Receptor and Progestin Receptor Induction in the Guinea-Pig Hypothalamus and Preoptic Area. Brain Res. 725:37–48.

    Google Scholar 

  78. Brown, T. J., Naftolin, F., and MacLusky, N. J. 1992. Sex differences in estrogen receptor binding in the rat hypothalamus: Effects of subsaturating pulses of estradiol. Brain Res. 578: 129–134.

    Google Scholar 

  79. Brown, T. J., MacLusky, N. J., Shanabrough, M., and Naftolin, F. 1990. Comparison of age-and sex-related changes in cell nuclear estrogen-binding capacity and progestin receptor induction in the rat brain. Endocrinology 126:2965–2972.

    Google Scholar 

  80. Brown, T. J., Hochberg, R. B., Zielinski, J. E., and MacLusky, N. J. 1988. Regional sex differences in cell nuclear estrogen-binding capacity in the rat hypothalamus and preoptic area. Endocrinology 123:1761–1770.

    Google Scholar 

  81. Lauber, A. H., Mobbs, C. V., Muramatsu, M., and Pfaff, D. W. 1991. Estrogen receptor messenger RNA expression in rat hypothalamus as a function of genetic sex and estrogen dose. Endocrinology 129:3180–3186.

    Google Scholar 

  82. Lauber, A. H., Romano, G. J., and Pfaff, D. W. 1991. Sex difference in estradiol regulation of progestin receptor mRNA in rat mediobasal hypothalamus as demonstrated by in situ hybridization. Neuroendocrinology 53:608–613.

    Google Scholar 

  83. Brown, T. J., MacLusky, N. J., Shanabrough, M., and Naftolin, F. 1990. Comparison of age-and sex-related changes in cell nuclear estrogen-binding capacity and progestin receptor induction in the rat brain. Endocrinology 126:2965–2972.

    Google Scholar 

  84. Palkovits, M. 1973. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59:449–450.

    Google Scholar 

  85. Pleim, E. T., Brown, T. J., MacLusky, N. J., Etgen, A. M., and Barfield, R. J. 1989. Dilute estradiol implants and progestin receptor induction in the ventromedial nucleus of the hypothalamus: correlation with receptive behavior in female rats. Endocrinology 124:1807–1812.

    Google Scholar 

  86. Delville, Y., and Blaustein, J. D. 1991. A site for estradiol priming of progesterone-facilitated sexual receptivity in the ventrolateral hypothalamus of female guinea pigs. Brain Res. 559: 191–199.

    Google Scholar 

  87. Nordeen, E. J., and Yahr, P. 1982. Hemispheric asymmetries in the behavioral and hormonal effects of sexually differentiating mammalian brain. Science 218:394–396.

    Google Scholar 

  88. Sandhu, S., Cook, P., and Diamond, M. C. 1986. Rat cerebral cortical estrogen receptors: male-female, right-left. Exp Neurol 92:186–196.

    Google Scholar 

  89. Roy, E. J., and Lynn, D. M. 1987. Asymmetry in responsiveness of the hypothalamus of the female rat to estradiol. Physiol. Behav. 40:267–269.

    Google Scholar 

  90. Walters, M. J., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1993. In vitro autoradiographic visualization of occupied estrogen receptors in the rat brain with an iodinated estrogen ligand. J. Histochem. Cytochem. 41:1279–1290.

    Google Scholar 

  91. Gorski, R. A., Harlan, R. E., Jacobson, C. D., Shryne, J. E., and Southam, A. M. 1980. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J. Comp. Neurol. 193:529–539.

    Google Scholar 

  92. Kühnemann, S., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1994. Sex Differences in the Development of Estrogen Receptors in the Rat Brain. Horm Behav. 28:483–491.

    Google Scholar 

  93. Kühnemann, S., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1995. Sexual Differentiation of Estrogen Receptor Concentrations in the Brain: Effects of Neonatal Testosterone Exposure. Brain Res. 691:229–234.

    Google Scholar 

  94. DonCarlos, L. L., and Handa, R. J. 1994. Developmental profile of estrogen receptor mRNA in the preoptic area of male and female neonatal rats. Dev. Brain Res. 79:283–289.

    Google Scholar 

  95. Walters, M. J., Brown, T. J., Hochberg, R. B., and MacLusky, N. J. 1990. Comparison of [125]estrogen uptage in male and female mouse brain. Society for Neuroscience Abstracts p. 763

  96. Mani, S. K., Allen, J. M. C., Clark, J. H., Blaustein, J. D., and O'Malley, B. W. 1994. Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 265:1246–1249.

    Google Scholar 

  97. Nock, B., Blaustein, J. D., and Feder, H. H. 1981. Changes in noradrenergic transmission alter the concentration of cytoplasmic progestin receptors in hypothalamus. Brain Res. 207:371–396.

    Google Scholar 

  98. Brown, T. J., Adler, G. H., Sharma, M., Hochberg, R. B., and MacLusky, N. J. 1994. Androgen Treatment Decreases Estrogen Receptor Binding in the Ventromedial Nucleus of the Rat Brain: A Quantitative In Vitro Autoradiographic Analysis. Mol. Cell Neurosci. 5:549–555.

    Google Scholar 

  99. Bjerke, D. L., Brown, T. J., MacLusky, N. J., Hochberg, R. B., and Peterson, R. E. 1994. Partial demasculinization and feminization of sex behavior in male rats by in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin is not associated with alterations in estrogen receptor binding or volumes of sexually differentiated brain nuclei. Tox. Appl. Pharmacol. 127:258–267.

    Google Scholar 

  100. Shughrue, P. J., Bushnell, C. D., and Dorsa, D. M. 1992. Estrogen receptor messenger ribonucleic acid in female rat brain during the estrous cycle: A comparison with ovariectomized females and intact males. Endocrinology 131:381–388.

    Google Scholar 

  101. Jacobson, C. D., Arnold, A. P., and Gorski, R. A. 1987. Steroid autoradiography of the sexually dimorphic nucleus of the preoptic area. Brain Res. 414:349–356.

    Google Scholar 

  102. Simerly, R. B., Swanson, L. W., and Gorski, R. A. 1985. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: Immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res. 330:55–64.

    Google Scholar 

  103. Simerly, R. B. 1989. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Mol. Brain Res. 6:297–310.

    Google Scholar 

  104. Simerly, R. B., and Swanson, L. W. 1987. The distribution of neurotransmitter-specific cells and fibers in the anteroventral periventricular nucleus: implications for the control of gonadotrophin secretion in the rat. Brain Res. 400:11–34.

    Google Scholar 

  105. Toran-Allerand, C. D. 1984. On the genesis of sexual differentiation of the general nervous system: morphogenetic consequences of steroidal exposure and possible role of alpha-fetoprotein. Prog. Brain Res. 61:63–98.

    Google Scholar 

  106. Plapinger, L., and McEwen, B. S. 1976. Gonadal steroid-brain interactions in sexual differentiation. In Biological Determinants of Sexual Behavior. J. Hutchison, editor. John Wiley, New York. 153–217.

    Google Scholar 

  107. Brown, T. J., Scherz, B., Hochberg, R. B., and MacLusky, N. J. 1996. Regulation of estrogen receptor concentrations in the rat brain: effects of sustained androgen and estrogen exposure. Neuroendocrinology 63:53–60.

    Google Scholar 

  108. Lisciotto, C. A., and Morrell, J. I. 1993. Circulating gonadal steroid hormones regulate estrogen receptor mRNA in the male rat forebrain. Molecular Brain Res. 20:79–90.

    Google Scholar 

  109. Simerly, R. B., and Young, B. J. 1991. Regulation of estrogen receptor messenger ribonucleic acid in rat hypothalamus by sex steroid hormones. Mol. Endocrinol. 5:424–432.

    Google Scholar 

  110. Aste, N., Panzica, G. C., Aimar, P., Viglietti-Panzica, C., Harada, N., Foidart, A., and Balthazart, J. 1994. Morphometric studies demonstrate that aromatase-immunoreactive cells are the main target of androgens and estrogens in the quail medial preoptic nucleus. Exp. Brain Res. 101:241–252.

    Google Scholar 

  111. Beyer, C., Tramonte, R., Hutchison, R. E., Sharp, P. J., Barker, P. J., Huskisson, N. S., and Hutchison, J. B. 1994. Aromatase-immunoreactive neurons in the adult female chicken brain detected using a specific antibody. Brain Res. Bull. 33:583–588.

    Google Scholar 

  112. Beyer, C., Green, S. J., Barker, P. J., Huskisson, N. S., and Hutchison, J. B. 1994. Aromatase-immunoreactivity is localized specifically in neurons in the developing mouse hypothalamus and cortex. Brain Res. 638:203–210.

    Google Scholar 

  113. Balthazart, J., Foidart, A., Surlemont, C., and Harada, N. 1991. Neuroanatomical specificity in the co-localization of aromatase and estrogen receptors. J. Neurobiol. 22:143–157.

    Google Scholar 

  114. Beyer, C., Green, S. J., and Hutchison, J. B. 1994. Androgens influence sexual differentiation of embryonic mouse hypothalamic aromatase neurons in vitro. Endocrinology 135:1220–1226.

    Google Scholar 

  115. Beyer, C., Wozniak, A., and Hutchison, J. B. 1993. Sex-specific aromatization of testosterone in mouse hypothalamic neurons. Neuroendocrinology 58:673–681.

    Google Scholar 

  116. Erskine, M. S., MacLusky, N. J., and Baum, M. J. 1985. Effect of 5α-Dihydrotestosterone on Sexual Receptivity and Neural Progestin Receptors in Ovariectomized Rats Given Pulsed Estradiol. Biol. Reprod. 33:551–559.

    Google Scholar 

  117. Booth, J. E. 1977. Sexual behaviour of neonatally castrated rats injected during infancy with oestrogen and dihydrotestosterone. J. Endocr. 72:135–141.

    Google Scholar 

  118. Gladue, B. A., and Clemens, L. G. 1978. Androgenic influences on feminine sexual behavior in male and female rats: defeminization blocked by prenatal antiandrogen treatment. Endocrinology 103:1702–1709.

    Google Scholar 

  119. Herbison, A. E., and Theodosis, D. T. 1992. Immunocytochemical Identification of Oestrogen Receptors in Preoptic Neurons Containing Calcitonin Gene-Related Peptide in the Male and Female Rat. Neuroendocrinology 56:761–764.

    Google Scholar 

  120. Pfaff, D. W., and Schwartz-Giblin, S. 1988. Cellular mechanisms of female reproductive behaviors in: Knobil, E., and Neill, J. (eds.). “The Physiology of Reproduction, ” Raven. Press, New York.

    Google Scholar 

  121. Romano, G. J., Mobbs, C. V., Lauber, A., Howells, R. D., and Pfaff, D. W. 1990. Differential regulation of proenkephalin gene expression by estrogen in the ventromedial hypothalamus of male and female rats: implications for the molecular basis of a sexually differentiated behavior. Brain Res. 536:63–68.

    Google Scholar 

  122. DonCarlos, L. L., and Morrell, J. I. 1990. A subset of progesterone target neurons have axonal projections to the midbrain. Brain Res. 521:213–220.

    Google Scholar 

  123. Morrell, J. I., and Pfaff, D. W. 1982. Characterization of estrogen-concentrating hypothalamic neurons by their axonal projections. Science 217:1273–1276.

    Google Scholar 

  124. Weigand, S. J., and Terasawa, E. 1982. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotrophin secretion in the rat. Neuroendocrinology 34:395–404.

    Google Scholar 

  125. Ronnekliev, O. K., and Kelly, M. J. 1986. Luteinizing hormone releasing hormone neuronal system during the estrous cycle of the rat: effect of surgically-induced persistent estrus. Neuroendocrinology 43:564–576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLusky, N.J., Bowlby, D.A., Brown, T.J. et al. Sex and the Developing Brain: Suppression of Neuronal Estrogen Sensitivity by Developmental Androgen Exposure. Neurochem Res 22, 1395–1414 (1997). https://doi.org/10.1023/A:1022027408234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022027408234

Navigation