Skip to main content
Log in

Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Sartorius muscle fibres from cold-adapted Rana temporaria were exposed to variants of an established detubulation procedure (Koutsis et al. (1995) J Muscle Res Cell Motil 16, 519–528) to test the extent to which detubulation and tubular vacuolation phenomena could be separated using different conditions of osmotic shock. A control procedure was optimised to a 28-min exposure to 400 mM glycerol–Ringer. This was followed by a recovery step involving its replacement by a Ca2+/Mg2+-Ringer solution and steady cooling over 30 min from room temperature (∼18°C) to ∼10°C, followed by the restoration of the normal Ringer solution. This procedure successfully abolished the action potential after-depolarisation component, reflecting a loss of tubular conduction (‘detubulation’) in 74.3 ± 5.9% of the fibres studied. Omitting the cooling during the recovery step sharply reduced the incidence of detubulation. So did omitting either the high-[Ca2+] and/or [Mg2+] in the recovery solutions in test procedures, but to significantly different extents (P < 5%). Yet trapping of fluorescent Sulfhorhodamine B dye in ‘closed’ vacuoles persisted albeit with reduced proportions of fibre volume occupied by vacuoles. Furthermore, the variations in recovery conditions produced similar levels of vacuolation despite smaller vacuole sizes in the cooled fibres (P < 0.05). These findings demonstrate that fibre vacuolation and detubulation are phenomena that are potentially separable through varying the conditions of osmotic shock, with detubulation requiring significantly more stringent conditions than vacuolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian RH (1956) The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol 133: 631-658.

    PubMed  CAS  Google Scholar 

  • Adrian RH and Peachey LD (1973) Reconstruction of the action potential of frog sartorius muscle. J Physiol 235: 103-131.

    PubMed  CAS  Google Scholar 

  • Devlin CM, Chawla S, Skepper JN and Huang CL-H (2001) Persistent tubular conduction in vacuolated amphibian skeletal muscle following osmotic shock. J Muscle Res Cell Motil 22: 459-466.

    Article  PubMed  CAS  Google Scholar 

  • Endo M (1966) Entry of fluorescent dyes into the sarcotubular system of the frog muscle. J Physiol 185: 224-238.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Heuser JE, Reese TS, Somlyo AP and Somlyo AV (1978) T-tubule swelling in hypertonic solutions: a freeze substitution study. J Physiol 283: 133-146.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Venosa RA and Horowicz P (1973) Morphology and accessibility of the 'transverse' tubular system in frog sartorius muscle after glycerol treatment. J Membr Biol 14: 197-212.

    Article  PubMed  CAS  Google Scholar 

  • Fraser JA, Skepper JN, Hockaday AR and Huang CL-H (1998) The tubular vacuolation process in amphibian skeletal muscle. J Muscle Res Cell Motil 19: 613-629.

    Article  PubMed  CAS  Google Scholar 

  • Gage PW and Eisenberg RS (1969a) Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibres. J Gen Physiol 53: 265-278.

    Article  PubMed  CAS  Google Scholar 

  • Gage PW and Eisenberg RS (1969b) Action potentials, afterpotentials and excitation-contraction coupling in frog sartorius fibers without transverse tubules. J Gen Physiol 53: 298-310.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher FA and Huang CL-H (1997) Osmotic 'detubulation' in frog muscle arises from a reversible vacuolation process. J Muscle Res Cell Motil 18: 305-322.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Serratos H (1971) Inward spread of activation in vertebrate muscle fibres. J Physiol 212: 777-799.

    PubMed  CAS  Google Scholar 

  • Griffths G (1993) Quantitative aspects of immunocytochemistry. In: Fine Structure Immunocytochemistry. (Chap 11) Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Howell JN (1969) A lesion of the transverse tubules of skeletal muscle. J Physiol 201: 515-533.

    PubMed  CAS  Google Scholar 

  • Huang CL-H and Peachey LD (1989) Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibres. J Gen Physiol 93: 565-584.

    Article  PubMed  CAS  Google Scholar 

  • Huang CL-H and Peachey LD (1992) A reconstruction of charge movement during the action potential in frog skeletal muscle. Biophys J 61: 1133-1146.

    PubMed  CAS  Google Scholar 

  • Khan KN, Skepper JN, Hockaday AR, Burgess AJ and Huang CL-H (2000) Loop diuretics inhibit detubulation and vacuolation in amphibian muscle fibres exposed to osmotic shock. J Muscle Res Cell Motil 21: 79-90.

    Article  PubMed  Google Scholar 

  • Koutsis G, Philippides A and Huang CL-H (1995) The afterdepolarisation in Rana temporaria muscle fibres following osmotic shock. J Muscle Res Cell Motil 16: 519-528.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko SA (1971) Effect of fluxes of sugars and mineral ions on the light microscopic structure of frog fast muscle fibres. Nature 229: 424-426.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko SA and Lucy JA (2001) Reversible vacuolation of T-tubules in skeletal muscle: mechanisms and implications for cell biology. Int Rev Cytol 202: 243-298.

    Article  PubMed  CAS  Google Scholar 

  • Krolenko SA, Adamyan SY and Lucy JA (1997) Functional role of vacuolation in the T-system of skeletal muscle. Tsitologiya 39: 878-888.

    CAS  Google Scholar 

  • Krolenko SA, Amos WB and Lucy JA (1995) Reversible vacuolation of the transverse tubules of frog skeletal muscle: a confocal fluorescence microscopy study. J Muscle Res Cell Motil 16: 401-411.

    Article  PubMed  CAS  Google Scholar 

  • Lannergren J and Westerblad H (1987) Action potential fatigue in single skeletal fibres of Xenopus. Acta Physiol Scand 129: 311-318.

    Article  PubMed  CAS  Google Scholar 

  • Lannergren J, Bruton J and Westerblad H (1999) Vacuole formation in fatigued single muscle fibres from frog and mouse. J Muscle Res Cell Motil 20: 19-32.

    Article  PubMed  CAS  Google Scholar 

  • Nik-Zainal S, Skepper JN, Hockaday A and Huang CL-H (1999) Cardiac glycosides inhibit detubulation in amphibian skeletal muscle fibres exposed to osmotic shock. J Muscle Res Cell Motil 20: 45-53.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan N and Huang CL-H (1990) Separation of tubular electrical activity in amphibian skeletal muscle through temperature change. Exp Physiol 75: 721-724.

    PubMed  CAS  Google Scholar 

  • Sheikh SM, Skepper JN, Chawla S, Vandenberg JI, Elneil S and Huang CL-H (2001) Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres. J Physiol 535: 579-590.

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER (1997) Stereological Methods. (Vol 1) In: (eds) Practical Methods for Biological Morphometry. Academic Press, London.

    Google Scholar 

  • Zachar J, Zacharova D and Adrian RH (1972) Observations on 'detubulated' muscle fibres. Nature New Biol 239: 153-155.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, S.J., Chawla, S., Fraser, J.A. et al. Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle. J Muscle Res Cell Motil 23, 327–333 (2002). https://doi.org/10.1023/A:1022019131898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022019131898

Keywords

Navigation