Skip to main content
Log in

Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Previous studies shown that thermoplastic blends of corn starch with some biodegradable synthetic polymers (poly(ε-caprolactone), cellulose acetate, poly(lactic acid) and ethylene-vinyl alcohol copolymer) have good potential to be used in a series of biomedical applications. In this work the thermal behavior of these structurally complex materials is investigated by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). In addition, Fourier-transform infrared (FTIR) spectroscopy was used to investigate the chemical interactions between the different components. The endothermic gelatinization process (or water evaporation) observed by DSC in starch is also observed in the blends. Special attention was paid to the structural relaxation that can occur in the blends with poly(lactic acid) at body temperature that may change the physical properties of the material during its application as a biomaterial. At least three degradation mechanisms were identified in the blends by means of using TGA, being assigned to the mass loss due to the plasticizer leaching, and to the degradation of the starch and the synthetic polymer fractions. The non-isothermal kinetics of the decomposition processes was analyzed using two different integral methods. The analysis included the calculation of the activation energy of the correspondent reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Starch Chemistry and Technology,” 2nd edn, edited by R. L. Whistler, J. N. Bemiller, E. F. Paschall (Academic Press, New York, 1984).

    Google Scholar 

  2. A. H. Khalil, Food Chem. 68 (2000) 61; J. S. Peanasky, J. M. Long and R. P. Wool, J. Polym. Sci.: Polym. Phys. 29 (1991) 565.

    Google Scholar 

  3. F. H. Otey, A. M. Mark, C. L. Mehltretter and C. R. Russel, Ind. Eng. Chem. Prod. Res. Des. 13 (1974) 90.

    Google Scholar 

  4. G. F. Fanta, R. C. Burr, W. C. Doane and C. R. Russel, Starch/Starke 30 (1978) 237.

    Google Scholar 

  5. E. B. Bagfey, G. R. Fanta, R. C. Burr, W. C. Doane and C. R. Russel, Polym. Eng. Sci. 17 (1977) 311.

    Google Scholar 

  6. R. G. Patil and G. R. Fanta, Starch/Starke 46 (1994) 142.

    Google Scholar 

  7. G. J. L. Griffin, Adv. Chem. Ser. 134 (1974) 159.

    Google Scholar 

  8. E. R. George, T. M. Sullivan and E. H. Park, Polym. Eng. Sci. 34 (1994) 17.

    Google Scholar 

  9. G. F. Fanta, C. L. Swanson and R. L. Shogren, J. Appl. Polym. Sci. 44 (1992) 2037.

    Google Scholar 

  10. C. L. Swanson, R. L. Shogren, G. F. Fanta and S. H. Imam, J. Environ. Polym. Degrad. 1 (1993) 155.

    Google Scholar 

  11. M. F. Koenig and S. J. Huang, Polymer 36 (1995) 1877.

    Google Scholar 

  12. R. S. Lenk, ibid. 21 (1981) 371.

    Google Scholar 

  13. Z. Yang, M. Bhattacharya and U. R. Vaidya, ibid. 37 (1996) 2137.

    Google Scholar 

  14. Y. Tokiwa, A. Iwamoto and M. Koyama, Polym. Mat. Sci. Eng 63 (1990) 742.

    Google Scholar 

  15. D. Raghavan and A. Emekalam, Polym. Degr. Stab. 72 (2001) 509.

    Google Scholar 

  16. R. L. Reis and A. M. Cunha, in “Encyclopedia of Materials: Science and Technology” (Elsevier Science Ltd, 2001) p. 8810.

  17. M. E. Gomes, A. S. Ribeiro, P. B. Malafaya, R. L. Reis and A. M. Cunha, Biomaterials 22 (2001) 883.

    Google Scholar 

  18. R. L. Reis and A. M. Cunha, Journal of Applied Medical Polymers 4 (2000) 1.

    Google Scholar 

  19. R. A. Sousa, J. F. Mano, R. L. Reis, A. M. Cunha and M. J. Bevis, Polym. Eng. Sci. 42 (2002) 1032.

    Google Scholar 

  20. P. B. Malafaya, C. Elvira, A. Gallardo, J. San Román and R. L. Reis, J. Biomater. Sci.: Polym. Ed. 12 (2001) 1227.

    Google Scholar 

  21. C. Elvira, J. F. Mano, J. San Román and R. L. Reis, Biomaterials 23 (2002) 1955.

    Google Scholar 

  22. I. Espigares, C. Elvira, J. F. Mano, B. Vasquez, J. San Roman and R. L. Reis, ibid. 23 (2002) 1883.

    Google Scholar 

  23. D. Demirgöz, C. Elvira, J. F. Mano, A. M. Cunha, E. Piskin and R. L. Reis, Polym. Degrad. Stability 70 (2000) 161.

    Google Scholar 

  24. C. M. Vaz, A. M. Cunha and R. L. Reis, Materials Research Innovations 4 (2001) 375.

    Google Scholar 

  25. S. C. Mendes, Y. P. Bovell, R. L. Reis, A. M. Cunha, J. D. De Bruijn and C. A. Van Blitterswijk, Biomaterials 22 (2001) 2057.

    Google Scholar 

  26. M. E. Gomes, R. L. Reis, A. M. Cunha, C. A. Blitterswijk and J. D. De Bruijn, ibid. 22 (2001) 1911.

    Google Scholar 

  27. I. B. Leonor, A. Ito, K. Onuma, N. Kanzaki and R. L. Reis, ibid. (2002), in press.

  28. I. B. Leonor, R. A. Sousa, A. M. Cunha, Z. Zhong, D. Greenspan and R. L. Reis, J. Mater. Sci.: Mater. Medicine 13 (2002) 1.

    Google Scholar 

  29. D. K. Kweon, D. S. Cha, H. J. Park, S. T. Lim, J. Appl. Polym. Sci. 78 (2000) 986.

    Google Scholar 

  30. T. Tikuisis, D. E. Axelson and A. Sharma, Polym. Eng. Sci. 33 (1993) 26.

    Google Scholar 

  31. J. W. Park, S. S. Im, S. H. Kim and Y. H. Kim, Polym. Eng. Sci. 40 (2000) 2539.

    Google Scholar 

  32. A. A. Hanna, A. H. Basta, H. El-Saied and I. F. Abadir, Die Angewandte Makromolekulare Chemie 260 (1998) 1.

    Google Scholar 

  33. F. S. Sousa, A. P. G. Barreto and R. O. Macêdo, J. Therm. Anal. Cal. 64 (2001) 739.

    Google Scholar 

  34. S. J. Huang, M. F. Koenig and M. Huang, in “Biodegradable Polymers and Packaging,” edited by C. Ching, D. L. Kglum and E. L. Thomas (Technomic Lancaster, PA, 1993), pp. 97-110.

    Google Scholar 

  35. M. Day, J. D. Cooney, K. Shaw, J. Watts, J. Therm. Anal. 52 (1998) 261.

    Google Scholar 

  36. See, for example, U. W. Gedde, “Polymer Physics” (Chapman & Hall, London, 1995), Ch. 5.

    Google Scholar 

  37. K. Liao, D. Quan and Z. Lu, Eur. Polym. J. 38 (2002) 157.

    Google Scholar 

  38. S. Jacobsen and H. G. Fritz, Polym. Eng. Sci. 36 (1996) 2799.

    Google Scholar 

  39. N. M. Alves, J. F. Mano, E. Balaguer, J. M. Meseguer Dueñas and J. L. Gómez Ribelles, Polymer 43 (2002) 4111.

    Google Scholar 

  40. T. Hatakeyama and F. X. Quinn, “Thermal analysis, Fundamentals and Applications to Polymer Science” (John Wiley & Sons, Chichester, 1994).

    Google Scholar 

  41. D. Vega, M. A. Villar, M. D. Failla, E. M. Vallés, Polym. Bull. 37 (1996) 229.

    Google Scholar 

  42. P. Aggarwal and D. Dollimore, Thermoch. Acta. 291 (1997) 65.

    Google Scholar 

  43. X. Zhang, J. Golding and I. Burgar, Proceedings of the 7th World Conference on Biodegradable Polymers & Plastics, Pisa, Italy, June 4–8, (2002) p. 131.

  44. A. Broido, J. Polym. Sci.: A-2, 7 (1969) 1761.

    Google Scholar 

  45. A. A. Soliman, N. A. El-Shinnawy and F. Mobarak, Thermoch. Acta 296 (1997) 149.

    Google Scholar 

  46. H. H. Horowitz and G. Metzger, Anal. Chem. 35 (1963) 1465.

    Google Scholar 

  47. X. Qu, A. Wirsén, A.-C. Albertsson, Polymer 41 (2000) 4841.

    Google Scholar 

  48. R. V. Rao, P. V. Ashokan and M. H. Shridhar, Polym. Degrad. Stabil. 70 (2000) 11.

    Google Scholar 

  49. J. F. Mano, R. L. Reis and A. M. Cunha, “Dynamic Mechanical Analysis in Polymers for Medical Applications,” to appear in the Nato Science Series, Polymer Based Systems on Tissue Engineering, Replacement and Regeneration (Kluwer Academic Publishers, 2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mano, J.F., Koniarova, D. & Reis, R.L. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine 14, 127–135 (2003). https://doi.org/10.1023/A:1022015712170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022015712170

Keywords

Navigation