Skip to main content
Log in

17 β-Estradiol Enhances the Outgrowth and Survival of Neocortical Neurons in Culture

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Results of this investigation demonstrate that exposure to 17 β-estradiol differentially and significantly regulates cortical nerve cell outgrowth depending on the cortical region. Parietal and occipital neurons treated with 1 nM 17 β-estradiol showed a greater magnitude of neuronal outgrowth whereas outgrowth of temporal cortex neurons was decreased in the presence of 1 nM 17 β-estradiol. Frontal cortex neurons showed a consistent enhancement of neuronal outgrowth that did not reach statistical significance. The dose response profile for 17 β-estradiol regulation of the macromorphological features exhibited a bimodal dose response relationship whereas the dose response profile for 17 β-estradiol regulation of the micromorphological features exhibited a dose response more characteristic of an inverted V-shaped function. An antagonist to the NMDA receptor antagonist, AP5, abolished the growth promoting effect of 17 β-estradiol whereas the nuclear estrogen receptor antagonist ICI 182,780 did not. Lastly, neocortical neurons exposed to 17 β-estradiol exhibited greater viability and survival than control neurons over a two week period. These data indicate that 17 β-estradiol can enhance the growth and viability of select populations of neocortical neurons and that the growth promoting effects of 17 β-estradiol can be blocked by an antagonist to the NMDA glutamate receptor and not by an antagonist to the estrogen nuclear receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brinton, R. D., Monreal, A. W., and Fernandez, J. G. 1994. Vasopressin-induced Neurotrophism in Cultured Hippocampal Neurons via V1 Receptor Activation. J Neurobiol 25(4):380–394.

    Google Scholar 

  2. Ramon y Cajal, S. (1911). Histologie due systeme nerveux del l'homme et vertebres. Instituto Ramon y Cajal, Madrid. 2nd printing (1972).

    Google Scholar 

  3. Black J. E., and Greenough, W. T. (1991) Developmental approaches to the memory process. In: Learning and memory: A biological view (Martinez JL, Kesner RP, eds) pp 61–92. San Diego, CA: Academic Press.

    Google Scholar 

  4. Brinton, R. E. 1991. Biochemistry of Learning and Memory, In: Learning and Memory: A Biological View, J. L. Martinez and R. P. Kesner eds., Academic Press, San Diego, 2nd Edition, pp 199–246.

    Google Scholar 

  5. Jessel, T. M., and Kandel, E. R. 1993. Synaptic transmission: A bidirectional and self modifiable form of the cell-cell communication Cell/Neuron Review Suppl. 72/10:1–30.

    Google Scholar 

  6. Kandel, E. R., and O'Dell, T. J. 1992. Are adult learning mechanisms also used for development? Sci. 258:243–244.

    Google Scholar 

  7. Phillips, S. M., and Sherwin, B. B. 1992. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendo 17(5):485–495.

    Google Scholar 

  8. Kampen, D. L., and Sherwin, B. B. 1994. Estrogen use and verbal memory in healthy postmenopausal women. Obst. and Gynecolo. 83:979–983.

    Google Scholar 

  9. Phillips, S. M. and Sherwin B. B. 1992. Variations in memory function and sex steroid hormones across the menstrual cycle. Psychoneuroendocrinology, 17(5):497–506.

    Google Scholar 

  10. Singh, M., Meyer, E. M., Millard, W. J., and Simpkins, J. W. 1994. Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res. 644(2):305–312.

    Google Scholar 

  11. Brinton, R. D. 1993. 17 β-estradiol induction of filopodial growth in cultured hippocampal neurons within minutes of exposure. Mol. Cell. Neurosci. 4:36–46.

    Google Scholar 

  12. Gould, E., Woolley, C. S., Frankfurt, M., and McEwen, B. S. 1990. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 10(4):1286–1291.

    Google Scholar 

  13. Woolley, C. S., Gould, E., Frankfurt, M., and McEwen, B. S. 1990. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10(12):4035–4039.

    Google Scholar 

  14. Woolley, C. S., and McEwen, B. S. 1992. Estradiol mediates fluctuation in hippocampal synapse density in during the estrous cycle in the adult rat. J. Neurosci. 12:2549–2554.

    Google Scholar 

  15. Woolley, C. S., and McEwen, B. S. 1994. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-Asparatate receptor-dependent mechanism. J. Neurosci., 14(12):7680–7687.

    Google Scholar 

  16. Murphy, D. D., and Segal, M. 1996. Regulation of dendritic spine density in cultured hippocampal neurons by steroid hormones. J. Neurosci., 16(13):4059–4068.

    Google Scholar 

  17. Toran-Allerand, C. D. 1991. Organotypic culture of the developing cerebral cortex and hypothalamus: relevance to sexual differentiation. Psychoneuroendo, 16:7–24.

    Google Scholar 

  18. Toran-Allerand, C. D. 1984. On the genesis of sexual differentiation of the central nervous system: morphogenetic consequences of steroidal exposure and possible role of fetoprotein. Prog. Brain Res. 61:63–98.

    Google Scholar 

  19. Brinton, R. E. 1981. Interrelationships of neuropsychological and psychometric measures of abstraction and their relationship to generalized and lateralized cerebral cortical functioning. Masters Thesis, Neuropsychology, University of Arizona, Tucson, AZ.

    Google Scholar 

  20. Goldman-Rakic, P. S. 1988. Topography of cognition: Parallel distributed networks in primate association cortex. Ann. Rev. Neurosci. 11:137–156.

    Google Scholar 

  21. Posner, M. I., Peterson, S. E., Fox, P. T., and Raichle, M. E. 1988. Localization of cognitive operations in the human brain. Science. 240:1627–1631.

    Google Scholar 

  22. Brinton, R. D. 1994. The Neurosteroid, 3α-hydroxy-5α-pregnan-20-one, Induces Cytoarchitectural Regression In Cultured Fetal Hippocampal Nerve Cells. J. Neurosci. 14(5):2763–2774.

    Google Scholar 

  23. Iino, M., Ozawa, S., and Keisuke, T. 1990. Permeation of calcium through excitatory amino acid receptor channels in cultured hippocampal neurons. J. Physiol. 424:151–165.

    Google Scholar 

  24. Collingridge, G. L., and Singer, W. 1990. Excitatory amino acid receptors and synaptic plasticity. TIPS 11:290–296.

    Google Scholar 

  25. Liaw, J.-S., and Berger, T. W. 1996. The dynamic synapse: A new concept of neural representation and computation. Hippocampus 6:591–600.

    Google Scholar 

  26. Mattson, M. P., Dou, P., and Kater, S. B. 1988. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100.

    Google Scholar 

  27. Mattson, M. P., and Kater, S. B. 1989. Excitatory and inhibitory neurotransmitters in the generation and degeneration of hippocampal neuroarchitecture. Brain Res. 478:337–348.

    Google Scholar 

  28. Mattson, M. P. 1992. Calcium as sculptor and destroyer of neural circuitry. Exp. Gerontology 47:29–49.

    Google Scholar 

  29. McDonnell, D. P., Clemm, D. L., Hermann, T., Goldman, M. E., and Pike, J. W. 1995. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol. Endocrin. 9:659–669.

    Google Scholar 

  30. Aronica, S. M., Kraus, W. L., and Katzenellenbogen, B. S. 1994. Estrogen action via the cAMP signaling pathway: Stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc. Natl. Acad. Sci. (Wash.) 91:8517–8521.

    Google Scholar 

  31. Brewer, G. J., Torricelli, J. R., Evege, E. K., and Price, P. J. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum free medium combination. J. Neurosci. Res. 35:567–576.

    Google Scholar 

  32. Gee, K. W., Bolger, M. B., Brinton, R. E., Coirini, H., and McEwen, B. S. 1988. Steroid Modulation of the Chloride ionophore in Rat Brain: Structure-Activity Requirements, Regional Dependence and Mechanism of Action. Journal of Pharmacology and Experimental Therapeutics, 246:803–812.

    Google Scholar 

  33. Raymond, L. A., Tingley, W. G., Blackstone, C. D., Roche, K. W., and Huganir, R. 1994. Glutamate receptor modulation by protein phosphorylation. J. Physiol. 88(3):181–192.

    Google Scholar 

  34. Raymond, L. A., Blackstone, C. D., and Huganir, R. 1993. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent kinase. Nature, 361:637–641.

    Google Scholar 

  35. Wong, M., and Moss, R. L. 1992. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J. Neurosci. 12:3217–3225.

    Google Scholar 

  36. Nabekura, J., Oomura, Y., Minami, T., Mizuno, Y., and Fukuda, A. 1986. Mechanism of the rapid effect of 17β-estradiol on medial amydala neurons. Science 233:226–228.

    Google Scholar 

  37. Gu, Q., and Moss, R. L. 1996. 17β-estradiol potentiates kainateinduced currents via activation of the cAMP cascade. J. Neurosci. 16:3620–3629.

    Google Scholar 

  38. Joels, M., and Karst, H. 1995. Effects of estradiol and progesterone on voltage-gated calcium and potassium conductances in rat CA1 hippocampal neurons. J. Neurosci. 15:4289–4297.

    Google Scholar 

  39. Fillit, H., Weinreb, H., Cholst, I., Luine, V., McEwen, B., Amador, R., and Zabriskie, J. 1986. Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer's type. Psychoneuroendo. 11(3):337–345.

    Google Scholar 

  40. Honjo, H., Ogino, Y., Naitoh, K., Urabe, M., Kitawaki, J., Yasuda, J., Yamamoto, T., Ishihara, S., Okada, H., Yonezawa, T., Hayashi, K., and Nambara, T. 1989. In vivo effects by estrone sulfate on the central nervous system-senile dementia (Alzheimer's type). J. Steroid Biochem. 34(16):521–525.

    Google Scholar 

  41. Hagion, N., Ohkura, T., Isse, K., Akasawa, K., and Hamamoto, M. Estrogen for clinical trials in dementia of Alzheimer Type. 3rd Intern. Symposium on Alzheimer's and Parkinson's Disease, Chicago, Nov., 1993.

  42. Paganini-Hill, A., and Henderson, Vw. 1994. Estrogen deficiency and risk of AD in women. Am. J. Epidemiology, 140:256–261.

    Google Scholar 

  43. Henderson, V. W., Paganini-Hill, A., Emanuel, C. K., Dunn, M. E. and Buckwalter, G. 1994. Estrogen replacement therapy in older women, Arch. Neurology, 51:896–900.

    Google Scholar 

  44. Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R. 1996. Effect of oestrogen during menopause on risk and age at onset of Alzheimer's Disease. Lancet, 348:429–432.

    Google Scholar 

  45. Schneider, L. S., Farlow, M. R., Henderson, V. W., and Pogoda, J. M. 1996. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer's Disease. Neurology, 46: 1580–1584.

    Google Scholar 

  46. Wysowski, D. K., Golden, L., and Burke, L. 1995. Use of menopausal estrogens and medroxyprogesterone in the United States, 1982–1992. Obst. and Gynecol. 85:6–10.

    Google Scholar 

  47. Shumaker, S., and Rapp, S. 1996. Hormone replacement therapy in dementia prevention: The Women's Health Initiative Memory Study. Neurobiol. of Aging, 17(4S) 34.

    Google Scholar 

  48. Brinton, R. D., 1997. Equilin, A Major Component of the Estrogen Replacement Therapy, Premarin, Increases Cortical Nerve Cell Growth, Pages 767–779, in K. Iqbal, B. Winblad, T. Nishimura, M. Takeda and H. Wisniewski (eds.) Alzheimer's Disease: Biology, Diagnosis and Therapeutics, John Wiley & Sons.

  49. Brinton, R. D., Montoya, M., and Hsieh, D. 1996. Premarin increases the growth of neurons from the cerebral cortex. Soc. for Neurosci. Absts. 22:299.3.

    Google Scholar 

  50. Brinton, R. D., Muhammad, M., Hsieh, D., and Chen, E. 1997. The estrogen replacement therapy, Premarin, increases neuronal survival and protects neurons against oxidative damage: Implications for Alzheimer's Disease, Soc. for Neurosci. Absts. 23:20.5.

    Google Scholar 

  51. Brewer, G. J., Torricelli, J. R., Evege, E. K., and Price, P. J. 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neuroscience Research, 35:567–576.

    Google Scholar 

  52. Solodkin, A., and Van Hoesen, G. W. 1997. Neuropathology and Functional Anatomy of Alzheimer's Disease. Pages 151–177. in Brioni and Decker, (eds.) Pharmacological Treatment of Alzheimer's Disease: Molecular and Neurobiological Foundations, John Wiley & Sons.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinton, R.D., Tran, J., Proffitt, P. et al. 17 β-Estradiol Enhances the Outgrowth and Survival of Neocortical Neurons in Culture. Neurochem Res 22, 1339–1351 (1997). https://doi.org/10.1023/A:1022015005508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022015005508

Navigation