Skip to main content
Log in

Cynipid Gall-Wasp Communities Correlate with Oak Chemistry

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Host-plant association data, gathered from field surveys conducted throughout Florida and from the literature, were used to identify the specificity of cynipid gall inducers to one or more of six Quercus species that occur at Archbold Biological Station, Lake Placid, Florida, USA, including the red oaks Q. laevis, Q. myrtifolia, and Q. inopina, and the white oaks Q. chapmanii, Q. geminata, and Q. minima. Quercus myrtifolia had the highest cynipid richness and diversity (37 cynipid species, Shannon H′ = 3.61, Simpson's D = 0.97), followed by Q. chapmanii, Q. laevis, Q. inopina, Q. geminata, and finally Q. minima (10 species, H′ = 2.30, D = 0.90). All cynipid species showed strong fidelity to a particular host plant or a restricted set of host plants. An ordination of gall-wasp host associations indicated that the cynipid communities of each oak species were distinct and specific to a given oak species. Leaf samples taken from each oak species were analyzed for condensed and hydrolyzable tannins, total phenolics, lignin, cellulose and hemicellulose, nitrogen, and carbon. All of these chemical traits, with the exception of carbon, differed by oak species, and the differences were strongly correlated with the axes of the cynipid--species ordination. These results suggest that gall-wasp occurrence is influenced by oak chemistry and imply that experimental studies of cynipid gall inducers that examine host-plant chemistry and female oviposition choice and larval performance will yield useful insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, W. G. and Hartnett, D. C. 1990. Pine flatwoods and dry prairies, pp. 103-149, in R. L. Myers and J. J. Ewel (Eds.). Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.

    Google Scholar 

  • Abrahamson, W. G. and McCrea, K. D. 1986. Nutrient and biomass allocation in Solidago altissima: effects of two stem gallmakers, fertilization, and ramet isolation. Oecologia 68:174-180.

    Google Scholar 

  • Abrahamson, W. G. and Weis, A. E. 1987. Nutritional ecology of arthropod gall makers, pp. 235-258, in F. Slansky, Jr., and J. G. Rodriquez (Eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York.

    Google Scholar 

  • Abrahamson, W. G. and Weis, A. E. 1997. Evolutionary Ecology Across Three Trophic Levels: Goldenrods, Gallmakers, and Natural Enemies. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Abrahamson, W. G., Johnson, A. F., Layne, J. N., and Peroni, P. 1984. Vegetation of the Archbold Biological Station, Florida: an example of the southern Lake Wales Ridge. Fl. Sci. 47:209-250.

    Google Scholar 

  • Abrahamson, W. G., McCrea, K. D., Whitwell, A. J., and Vernieri, L. A. 1991. The role of phenolics in goldenrod ball gall resistance and formation. Biochem. Syst. Ecol. 19:615-622.

    Google Scholar 

  • Abrahamson, W. G., Melika, G., Scrafford, R., and Csóka, G. 1998a. Gall-inducing insects provide insights into plant systematic relationships. Amer. J. Bot. 85:1159-1165.

    Google Scholar 

  • Abrahamson, W. G., Melika, G., Scrafford, R., and Csóka, G. 1998b. Associations and specificity among cynipid gall-Inducing wasps of eastern USA, pp. 225-240, in G. Csóka, W. J. Mattson, G. N. Stone and P. W. Price (Eds.). The Biology of Gall-Inducing Arthropods. USDA Forest Service, North Central Experiment Station. General Technical Report North Carolina-199.

  • Aguilar, J. M. and Boecklen, W. J. 1992. Patterns of herbivory in the Quercus grisea X Quercus gambelii species complex. Oikos 64:498-504.

    Google Scholar 

  • Anderson, S. S., McCrea, K. D., Abrahamson, W. G., and Hartzel, L. M. 1989. Host genotype choice by the ball gallmaker Eurosta solidaginis (Diptera: Tephritidae). Ecology 70:1048-1054.

    Google Scholar 

  • Bate-Smith, E. C. 1977. Astringent tannins of Acer species. Phytochemistry 16:1421-1426.

    Google Scholar 

  • Beals, E. W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14:1-55.

    Google Scholar 

  • Becerra, J. X. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:253-256.

    Google Scholar 

  • Berdegue, M. and Trumble, J. T. 1996. Effect of plant chemical extracts and physical characteristics of Apium graveolens and Chenopodium murale on host choice by Spodoptera exigua larvae. Entomol. Exp. Appl. 78:253-262.

    Google Scholar 

  • Berenbaum, M. R. 1981. Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: Plant chemistry and community structure. Ecology 62:1254-1266.

    Google Scholar 

  • Berenbaum, M. R. and Zangerl, A. R. 1998. Chemical phenotype matching between a plant and its insect herbivore. Proc. Nat. Acad. Sci. USA 95:13743-13748.

    Google Scholar 

  • Burks, B. D. 1979. Superfamily Cynipoidea, pp. 1045-1107, in K. V. Krombein, P. D. Hurd, Jr., D. R. Smith, and B. D. Burks (Eds.). Catalog of Hymenoptera in America North of Mexico, Vol. 1, Symphyta and Apocrita. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Camara, M. D. 1997. A recent host range expansion in Junonia coenia Hubner (Nymphalidae): oviposition preference, survival, growth, and chemical defense. Evolution 51:873-884.

    Google Scholar 

  • Carter, M. and Feeny, P. 1999. Host-plant chemistry influences oviposition choice of the spicebush swallowtail butterfly. J. Chem. Ecol. 25:1999-2009.

    Google Scholar 

  • Cornell, H. V. 1983. The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am. Midl. Nat. 110:225-232.

    Google Scholar 

  • Craig, T. P., Itami, J. K., Abrahamson, W. G., and Horner, J. D. 1993. Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47:1696-1710.

    Google Scholar 

  • Craig, T. P., Abrahamson, W. G., Itami, J. K., and Horner, J. D. 1999. Oviposition preference and offspring performance of Eurosta solidaginis on genotypes of Solidago altissima. Oikos 86:119-128.

    Google Scholar 

  • Craig, T. P., Itami, J. K., Shantz, C., Abrahamson, W. G., Horner, J. D., and Craig, J. V. 2000. The influence of host plant variation and intraspecific competition on oviposition preference and offspring performance in host races of Eurosta solidaginis. Ecol. Entomol. 25:7-18.

    Google Scholar 

  • Eliason, E. A. and Potter, D. A. 2000. Budhurst phenology, plant vigor, and host genotype effects on the leaf-galling generation of Callirhytis cornigera (Hymenoptera; Cynipidae) on pin oak. Environ. Entomol. 29:1199-1207.

    Google Scholar 

  • Felt, E. P. 1917. Key to American Insect Galls. New York State Museum Bulletin 200, Albany, New York.

    Google Scholar 

  • Felt, E. P. 1940. Plant Galls and Gall Makers. Hafner, New York.

    Google Scholar 

  • Floate, K. D. and Whitham, T. G. 1995. Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can. J. Bot. 73:1-13.

    Google Scholar 

  • Floate, K. D., Fernandes, G. W., and Nilsson, J. A. 1996. Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbush. Oecologia 105:221-229.

    Google Scholar 

  • Forkner, R. E. and Hunter, M. D. 2000. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81:1588-1600.

    Google Scholar 

  • Fritz, R. S., Nichols-Orians, C. M., and Brunsfeld, S. J. 1994. Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106-117.

    Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1991. Tannins and lignins, pp. 355-388, in G. A. Rosenthal and M. Berenbaum (Eds.). Herbivores, Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Hartley, S. E. 1998. The chemical composition of plant galls: Are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492-501.

    Google Scholar 

  • Horner, J. D. and Abrahamson, W. G. 1992. Influence of plant genotype and environment on oviposition preference and offspring survival in a gallmaking herbivore. Oecologia 90:323-332.

    Google Scholar 

  • Horner, J. D. and Abrahamson, W. G. 1999. Influence of plant genotype and early-season water deficits on oviposition preference and offspring performance in Eurosta solidaginis (Diptera: Tephritidae). Am. Midl. Nat. 142:162-172.

    Google Scholar 

  • How, S. T., Abrahamson, W. G., and Craig, T. P. 1993. Role of host plant phenology in host use by Eurosta solidaginis (Diptera: Tephritidae) on Solidago (Compositae). Environ. Entomol. 22:388-396.

    Google Scholar 

  • Jensen, R. J. 1997. Quercu Linnaeus sect. Lobatae Loudon, pp. 447-468, in Flora of North America Editorial Committee (Eds.). Flora of North America North of Mexico. Oxford University Press, New York.

    Google Scholar 

  • Klaper, R., Ritland, K., Mousseau, T. A., and Hunter, M. D. 2001. Heritability of phenolics in Quercus laevis inferred using molecular markers. J. Hered. 92:421-426.

    Google Scholar 

  • Kolehmainen, J., Roininen, H., Julkunen-Tiitto, R., and Tahvanainen, J. 1994. Importance of phenolic glucosides in host selection of shoot galling sawfly, Euura amerinae, on Salix pentandra. J. Chem. Ecol. 20:2455-2466.

    Google Scholar 

  • Li, H. L. and Hsiao, J. Y. 1973. A preliminary study of the chemosystematics of American oaks: phenolic characters of leaves. Bartonia 42:5-13.

    Google Scholar 

  • Li, H. L. and Hsiao, J. Y. 1976. A preliminary study of the chemosystematics of American oaks: phenolic characters of young twigs. Bartonia 44:14-21.

    Google Scholar 

  • Mani, M. S. 1964. Ecology of Plant Galls. Dr. W. Junk Publisher, The Hague.

    Google Scholar 

  • McCune, B. and Mefford, M. J. 1999. PC-ORD. Multivariate analysis of ecological data, version 4.13. MjM Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  • McGovern, T. P. and Ladd, T. L., Jr. 1990. Attractants for the northern corn rootworm (Coleoptera: Chrysomelidae): Alkyl-and alkenylphenols. J. Econ. Entomol. 83:1316-1320.

    Google Scholar 

  • Menges, E. S. 1999. Ecology and conservation of Florida scrub, pp. 7-22, in R. C. Anderson, J. S. Fralish, and J. Baskin (Eds.). The Savanna, Barren, and Rock Outcrop Communities of North America. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Myers, R. L. 1990. Scrub and high pine, pp. 150-193, in R. L. Myers and J. J. Ewel (Eds.). Ecosystems of Florida. University of Central Florida Press, Orlando, Florida.

    Google Scholar 

  • Nixon, K. C. 1997. Quercus Linnaeus, pp. 445-447, in Flora of North America Editorial Committee (Eds.). Flora of North America North of Mexico. Oxford University Press, New York.

    Google Scholar 

  • Nixon, K. C. and Muller, C. H. 1997. Quercus Linnaeus sect. Quercus, pp. 471-506, in Flora of North America Editorial Committee (Eds.). Flora of North America North of Mexico. Oxford University Press, New York.

    Google Scholar 

  • Nyman, T. and Julkunen-Tiitto, R. 2000. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc. Natl. Acad. Sci. USA 97:13184-13187.

    Google Scholar 

  • Pires, C. S. S. and Price, P. W. 2000. Patterns of host plant growth and attack and establishment of gall-inducing wasp (Hymenoptera: Cynipidae). Environ. Entomol. 29:49-54.

    Google Scholar 

  • Raman, A. 1993. Chemical ecology of gall insect–host plant interactions: substances that influence the nutrition and resistance of insects and the growth of galls, pp. 227-250, in T. N. Ananthakrishnan and A. Raman (Eds.). Chemical Ecology of Phytophagous Insects. Oxford and IBM Publishing, New Delhi.

    Google Scholar 

  • Raman, A. 1996. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. Int. J. Ecol. Environ. Sci. 22:133-143.

    Google Scholar 

  • Roininen, H., Price, P. W., Julkunen-Tiitto, R., Tahvanainen, J., and Ikonen, A. 1999. Oviposition stimulant for a gall-inducing sawfly, Euura lasiolepis, on willow is a phenolic glucoside. J. Chem. Ecol. 25:943-953.

    Google Scholar 

  • Rossiter, M. C., Schultz, J. C., and Baldwin, I. T. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267-277.

    Google Scholar 

  • Schoni, R., Stadler, E., Renwick, J. A. A., and Radke, C. D. 1987. Host and non-host plant chemicals influencing the oviposition behaviour of several herbivorous insects, pp. 31-36, in V. Labeyrie, G. Fabres, and D. Lachaise (Eds.). Insects–Plants. Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • Schultz, J. C. and Baldwin, I. T. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217:149-151.

    Google Scholar 

  • Shorthouse, J. D. 1982. Resource exploitation by gall wasps of the genus Diplolepis, pp. 193-198, in J. H. Visser and A. K. Minks (Eds.), Proceedings of the Fifth International Symposium of Insect-Plant Relationships. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Solomon, A. M. 1983a. Pollen morphology and plant taxonomy of white oaks in eastern North America. Am. J. Bot. 70:481-494.

    Google Scholar 

  • Solomon, A. M. 1983b. Pollen morphology and plant taxonomy of red oaks in eastern North America. Am. J. Bot. 70:495-507.

    Google Scholar 

  • Swain, T. 1979. The importance of flavonoids and related compounds in fern taxonomy and ecology. Bull. Torrey Bot. Club 107:113-153.

    Google Scholar 

  • Trelease, W. 1924. The American oaks. Mem. Natl. Acad. Sci. 20:1-255.

    Google Scholar 

  • Weld, L. H. 1951. Superfamily Cynipoidea, pp. 193-198, in C. F. W. Muesebeck, K. V. Krombein, and H. K. Townes (Eds.). Hymenoptera of America North of Mexico. Agricultural Monograph Number 2. US Government Printing Office, Washington, D.C.

    Google Scholar 

  • Weld, L. H. 1952. New American cynipid wasps from galls. Proc. U.S. Natl. Mus. 102:315-342.

    Google Scholar 

  • Weld, L. H. 1959. Cynipid Galls of the Eastern United States, Ann Arbor, Michigan. Privately printed, 121 pp.

    Google Scholar 

  • West, E. 1948. The oaks of Florida. J. N.Y. Bot. Gard. 49:273-283.

    Google Scholar 

  • Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Pop. Ecol. 42:105-113.

    Google Scholar 

  • Zangerl, A. R. and Berenbaum, M. R. 1993. Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74:47-54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren G. Abrahamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrahamson, W.G., Hunter, M.D., Melika, G. et al. Cynipid Gall-Wasp Communities Correlate with Oak Chemistry. J Chem Ecol 29, 209–223 (2003). https://doi.org/10.1023/A:1021993017237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021993017237

Navigation