Skip to main content
Log in

Blue Luminescence from Silicon Nanoparticles Suspended in Organic Liquids

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have prepared several nanometer-sized silicon colloids in organic liquids in the range from 3.7 to 9.8 nm with a constant weight density of 1 mg/ml by a gas evaporation technique. The blue–green luminescent energy was found to be independent of size, in contrast to its intensity and optical absorption, which showed a clear size effect. Special emphasis is placed on the advantage of using a colloidal system: controllability of mass density in a unit volume, isolation of each particle, selection of wide band-gap substances, capability of absolute quantum efficiency, and easy surface modification. As an example of the above advantages, we have determined the absolute quantum yield as a function of size. From the quantum yield thus derived and the proposed model that combines surface as well as volume effects, experimentally obtained parameters such as the diffusion velocity of an electron–hole pair and the initial flight distance of this pair are found to be consistent with those obtained from other data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. T. Canham (1990). Appl. Phys. Lett. 57, 1046A.

    Google Scholar 

  2. J. Linnros and N. Lalic (1995). Appl. Phys. Lett. 66, 3048.

    Google Scholar 

  3. Y. Osaka, K. Tsunetomo, F. Toyomura, H. Myoren, and K. Kohno (1992). Jpn. J. Appl. Phys. 31, L365.

    Google Scholar 

  4. H. Morisaki, H. Hashimoto, F. W. Ping, H. Nozawa, and H. Ono (1993). J. Appl. Phys. 74, 2977.

    Google Scholar 

  5. K. Kohno, Y. Osaka, F. Toyomura, and H. Katayama (1994). Jpn. J. Appl. Phys. 33, 6616.

    Google Scholar 

  6. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri (1990). Appl. Phys. Lett. 56, 2379.

    Google Scholar 

  7. M. Ruckschloss, B. Landkammer, and S. Veprek (1993). Appl. Phys. Lett. 63, 1474.

    Google Scholar 

  8. A. G. Cullis and L. T. Canham (1991). Nature 353, 335.

    Google Scholar 

  9. W. L. Wilson, P. F. Szajowski, and L. E. Brus (1993). Science 262, 1242.

    Google Scholar 

  10. Y. Kanemitsu (1994). J Phys. Soc. Jpn. 63, 107.

    Google Scholar 

  11. A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski (1994). Appl. Phys. Lett. 65, 1436.

    Google Scholar 

  12. K. Kimura and S. Bandow (1983). Bull. Chem. Soc. Jpn. 56, 3578.

    Google Scholar 

  13. K. Kimura (1995). J. Colloid Interface Sci. 183, 607.

    Google Scholar 

  14. N. Satoh, S. Bandow, and K. Kimura (1989). J. Colloid Interface Sci. 131, 161.

    Google Scholar 

  15. S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten (1996). J. Phys. Chem. 100, 13904.

    Google Scholar 

  16. K. A. Littau, P. J. Szajowski, A. J. Muller, and L. E. Brus (1993). J. Phys. Chem. 97, 1224.

    Google Scholar 

  17. Y. Zhu and K. Kimura (1995). Chem. Lett. 643.

  18. S. Iwasaki and K. Kimura (1997). Mater. Res. Soc. Symp. Proc. 452, 165.

    Google Scholar 

  19. N. Wada and M. Ichikawa (1976). J. Appl. Phys. 15, 755.

    Google Scholar 

  20. K. Kimura and S. Bandow (1987). Phys. Rev. Lett. 58, 1359.

    Google Scholar 

  21. S. Bandow and K. Kimura (1990). Solid State Commun. 73, 167.

    Google Scholar 

  22. N. Satoh, A. Naito, and K. Kimura (1995). Bull. Chem. Soc. Jpn. 68, 2151.

    Google Scholar 

  23. K. Kimura, A. Naito, H. Saito, and N. Satoh (1996). Bull. Mag. Res. 17(1–4), 157.

    Google Scholar 

  24. L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus, and F. Wooten (1996). Phys. Rev. B 54, 5029.

    Google Scholar 

  25. Y. Kanemitsu, T. Futagi, T. Matsumoto, and H. Mimura (1994). Phys. Rev. B 49, 14732.

    Google Scholar 

  26. M. Nakamura, Y. Mochizuki, K. Usami, Y. Itoh, and T. Nozaki (1984). Solid State Commun. 50, 1079.

    Google Scholar 

  27. Y. Kanemitsu, T. Ogawa, K. Shiraiishi, and K. Takeda (1993). Phys. Rev. B 48, 4883.

    Google Scholar 

  28. Y. Takeuchi, T. Ida, and K. Kimura (1997). J. Phys. Chem. 101, 1322.

    Google Scholar 

  29. S. Iwasaki, T. Ida, and K. Kimura (1996). Jpn. J. Appl. Phys. 35, L551.

    Google Scholar 

  30. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek (1994). Appl. Phys. Lett. 65, 1537.

    Google Scholar 

  31. K. F. Freed, in F. K. Fong (ed.), Energy Dependence of Electronic Relaxation Processes, Topics in Applied Physics, Vol. 15 (Springer-Verlag, Berlin/Heidelberg/New York, 1976), p. 95.

    Google Scholar 

  32. R. S. Knox, Theory of Excitons (Academic Press, New York, 1963), p. 170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, K. Blue Luminescence from Silicon Nanoparticles Suspended in Organic Liquids. Journal of Cluster Science 10, 359–380 (1999). https://doi.org/10.1023/A:1021981714227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021981714227

Navigation