Skip to main content
Log in

Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this paper we examine the electrodynamics of silver nanoparticles and of clusters of nanoparticles, with an emphasis on extinction spectra and of electric fields near the particle surfaces that are important in determining surface-enhanced Raman (SER) intensities. The particles and clusters are chosen to be representative of what has been studied in recent work on colloids and with lithographically prepared particles. These include spheres, spheroids, truncated tetrahedrons, and clusters of two or three of these particles, with sizes that are too large to be described with simple electrostatic approximations but small compared to the wavelength of light. The electrodynamics calculations are mostly based on the discrete dipole approximation (DDA), which is a coupled-finite element approach which produces exact or nearly exact results for particles of arbitrary size and shape if fully converged. Mie theory results are used to study the validity of the DDA for spherical particles, and we also study the validity of the modified long wavelength approximation (MLWA), which is based on perturbative corrections to the electrostatic limit, and of the single dipole per particle approximation (SDA). The results show how the dipole plasmon resonance properties and the electric field contours around the particle vary with particle shape and size for isolated particles. For clusters of particles, we study the effect of interparticle spacing on plasmon resonance characteristics. We also show that the quadrupole resonance is much less sensitive to particle shape and interparticle interactions than the dipole plasmon resonance. These results provide benchmarks that will be used in future comparisons with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel (1993). J. Chem. Phys. 99, 2101; J. Hulteen and R. P. Van Duyne (1995). J. Vac. Sci. Tech. A13, 1553.

    Google Scholar 

  2. S. E. Roark and K. L. Rowlen (1993). Chem. Phys. Lett. 212, 50.

    Google Scholar 

  3. R. C. Mucic, J. J. Storhoff, R. L. Letsinger, and C. A. Mirkin (1996). Nature 382, 607; R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin (1997). Science 277, 1078.

    Google Scholar 

  4. M. D. Musick, C. D. Keating, M. H. Keefe, and M. J. Natan (1997). Chem. Mater. 9, 1499.

    Google Scholar 

  5. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath (1997). Science 277, 1978.

    Google Scholar 

  6. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang (1997). J. Phys. Chem. B 101, 6661.

    Google Scholar 

  7. J. M. Petroski, Z. L. Wang, T. C. Green, and M. A. El-Sayed (1998). J. Phys. Chem. B 102, 3316.

    Google Scholar 

  8. R. P. Van Duyne, K. L. Haller, and R. I. Altkorn (1980). Chem. Phys. Lett. 126, 190.

    Google Scholar 

  9. C. L. Jahncke, M. A. Paesler, and H. D. Hallen (1995). Appl. Phys. Lett. 67, 2483; D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. Fogherty, and D. Batchelder (1995). Ultramicroscopy 61, 247; D. Gammon, S. W. Brown, E. S. Snow, T. A. Kennedy, D. S. Katzer, and D. Park (1997). Science 277, 85.

    Google Scholar 

  10. M. Kerker (1984). Accts. Chem. Research 17, 271.

    Google Scholar 

  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

    Google Scholar 

  12. P. W. Barber and S. C. Hill (1990). Light Scattering by Particles: Computational Methods (World Scientific, Singpore, 1990).

    Google Scholar 

  13. P. F. Liao and M. B. Stern (1982). Opt. Lett. 7, 483.

    Google Scholar 

  14. W. H. Yang, G. C. Schatz, and R. P. Van Duyne (1995). J. Chem. Phys. 103, 869.

    Google Scholar 

  15. E. M. Purcell and C. R. Pennypacker (1973). Astrophys. J. 186, 705.

    Google Scholar 

  16. B. T. Draine and P. J. Flatau (1994). J. Opt. Soc. Am. A 11, 1491; B. T. Draine and J. J. Goodman (1993). Astrophys. J. 405, 685; Program DDSCAT, by B. T. Draine and P. J. Flatau, University of California, San Diego, Scripps Insititute of Oceanography, 8605 La Jolla Dr., La Jolla, CA 92093.

    Google Scholar 

  17. D. W. Lynch and W. R. Hunter, in E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, New York, 1985), pp. 350–356.

    Google Scholar 

  18. E. J. Zeman and G. C. Schatz (1987). J. Phys. Chem. 91, 239.

    Google Scholar 

  19. M. Meier and A. Wokaun (1983). Opt. Lett. 8, 581; A. Wokaun, J. P. Gordon, and P. F. Liao (1982). Phys. Rev. Lett. 48, 957.

    Google Scholar 

  20. W. T. Doyle (1989), Phys. Rev. B 39, 9852.

    Google Scholar 

  21. G. C. Papavassiliou (1979). Prog. Solid State Chem. 12, 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, T., Kelly, L., Lazarides, A. et al. Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters. Journal of Cluster Science 10, 295–317 (1999). https://doi.org/10.1023/A:1021977613319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021977613319

Navigation