Skip to main content
Log in

A Variant of the Inverted Lanczos Method

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this note we study a variant of the inverted Lanczos method which computes eigenvalue approximates of a symmetric matrix A as Ritz values of A from a Krylov space of A −1. The method turns out to be slightly faster than the Lanczos method at least as long as reorthogonalization is not required. The method is applied to the problem of determining the smallest eigenvalue of a symmetric Toeplitz matrix. It is accelerated taking advantage of symmetry properties of the correspond ng eigenvector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • G. S. Ammar and W. B. Gragg, Numerical experience with a superfast real Toeplitz solver, Linear Algebra Appl., 121 (1989), pp. 185–206.

    Google Scholar 

  • A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl., 7 (1973), pp. 151–162.

    Google Scholar 

  • A. Cantoni and P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976), pp. 275–288.

    Google Scholar 

  • T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980), pp. 1251–1268.

    Google Scholar 

  • I. C. Gohberg and A. A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs, Math. Issled., 2 (1972), pp. 201–223.

    Google Scholar 

  • G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.

    Google Scholar 

  • T. Huckle, Computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix with spectral transformation Lanczos method, in NumericalT reatment of Eigenvalue Problems, Vol. 5, J. Albrecht, L. Collatz, P. Hagedorn, and W. Velte, eds., Birkhäuser, Basel, 1991, pp. 109–115.

    Google Scholar 

  • A. Melman, Bounds on the extreme eigenvalues of real symmetric Toeplitz matrices, SIAM J. Matr. Anal. Appl., 21 (2000), pp. 362–378.

    Google Scholar 

  • C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–133.

    Google Scholar 

  • V. F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J. Roy. Astr. Soc., 33 (1973), pp. 347–366.

    Google Scholar 

  • D. S. Scott, The advantages of inverted operators in Rayleigh-Ritz approximations, SIAM J. Sci. Stat. Comput., 3 (1982), pp. 68–75.

    Google Scholar 

  • W. F. Trench, Interlacement of the even and odd spectra of real symmetric Toeplitz matrices, Linear Algebra Appl., 195 (1993), pp. 59–68.

    Google Scholar 

  • H. Voss, Bounds for the minimum eigenvalue of a symmetric Toeplitz matrix, El ectr. Trans. Numer. Anal., 8 (1999), pp. 127–138.

    Google Scholar 

  • H. Voss, A symmetry exploiting Lanczos method for symmetric Toeplitz matrices, NumericalA lgorithms 25 (2000), pp. 377–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voss, H. A Variant of the Inverted Lanczos Method. BIT Numerical Mathematics 41, 1111–1120 (2001). https://doi.org/10.1023/A:1021961900633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021961900633

Navigation