Skip to main content
Log in

Propagating Waves in Visual Cortex: A Large-Scale Model of Turtle Visual Cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 μm/ms to 70 μm/ms and occasionally reflect from the caudolateral border of the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammermuller J, Muller JF, Kolb H (1995) The organization of the turtle inner retina. II. Analysis of color-coded and directionally selective cells. J. Comp. Neurol. 358: 35-62.

    Google Scholar 

  • Baker TI, Ulinski PS (2001) Models of direction selective and nondirection selective turtle retinal ganglion cells. Soc. Neurosci. Abstr.

  • Blanton MG, Kriegstein AR (1992) Properties of amino acid neurotransmitter receptors of embryonic cortical neurons when activated by exogenous and endogenous agonists. J. Neurophysiol. 67: 1185-1200.

    Google Scholar 

  • Blanton MG, Shen JM, Kriegstein AR (1987) Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in a spiny and sparsely spiny nonpyramidal neurons of turtle dorsal cortex. J. Comp. Neurol. 259: 277-297.

    Google Scholar 

  • Block J, Colombe JB, Ulinski PS (2002) Physiology of identified stellate cells from turtle visual cortex. Soc. Neurosci. Abstr.

  • Boiko VP (1980) Responses to visual stimuli in thalamic neurons of the turtle Emys orbicularis. Neurosci. Behav. Physiol. 10: 183-188.

    Google Scholar 

  • Bower JM, Beeman D (1997) The Book of Genesis, 2nd ed. TELOS, New York.

    Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, Fregnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695-699.

    Google Scholar 

  • Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control byGABA-mediated inhibition. J. Neurophysiol. 61: 747-758.

    Google Scholar 

  • Chervin RD, Pierce PA, Connors BW (1988) Periodicity and directionality in the propagation of epileptiform dischargers across neocortex. J. Neurophysiol. 60: 1695-1713.

    Google Scholar 

  • Colombe JB, Ulinski PS (1999) Temporal dispersion windows in cortical neurons. J. Comp. Neurosci. 7: 71-87.

    Google Scholar 

  • Connors BW, Kriegstein AR (1986) Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons. J. Neurosci. 6: 164-177.

    Google Scholar 

  • Contreras D, Llinas R (2001) Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency. J. Neurosci. 21: 9403-9413.

    Google Scholar 

  • Cosans CE, Ulinski PS (1990) Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections. J. Comp. Neurol. 296: 548-558.

    Google Scholar 

  • Desan PH (1984) The organization of the cerebral cortex of the pond turtle. Pseudemys scripta elegans. Ph.D. dissertation, Harvard University, Cambridge, MA.

    Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Travelling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron 29: 33-44.

    Google Scholar 

  • Feldman ML, Peters A (1979) A technique for estimating total spine numbers on Golgi-impregnated dendrites. J. Comp. Neurol. 188: 527-542.

    Google Scholar 

  • Fowler M (1994) Analysis of spontaneous inhibitory postsynaptic potentials from pyramidal cells of turtle visual cortex. Ph.D. dissertation, University of Chicago.

  • Ghanzafar AA, Nicoleilis MAL (1999) Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. Cerebral Cortex 9: 348-361.

    Google Scholar 

  • Granda AM, Fulbrook JE (1989) Classification of turtle retinal ganglion cells. J. Neurophysiol. 62: 723-737.

    Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hidesheim R (1994) Cortical point spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14: 2545-2568.

    Google Scholar 

  • Heller SB, Ulinski PS (1987) Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat. Embryol. 175: 505-515.

    Google Scholar 

  • Jahr CE, Stevens CF (1990) A qualitative description of NMDA receptor channel kinetic behavior. J. Neurosci. 10: 1830-1837.

    Google Scholar 

  • Jensen RJ, DeVoe RD (1983) Comparisons of directionally selective with other ganglion cells of the turtle retina: Intracellular recording and staining. J. Comp. Neurol. 217: 271-287.

    Google Scholar 

  • Khatri V, Ulinski PS (2000) Functional significance of inhibitory interactions between inhibitory interneurons in visual cortex. Neurocomputing 32-33: 425-432.

    Google Scholar 

  • Kriegstein AR (1987) Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. J. Neurosci. 6: 178-191.

    Google Scholar 

  • Larson-Prior LJ, Ulinski PS, Slater NT (1991) Excitatory amino acid receptor-mediated transmission in geniculocortical and intracortical pathways within visual cortex. J. Neurophysiol. 66: 293-306.

    Google Scholar 

  • Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA1 pyramidal neurons in vitro. J. Physiol. (Lond.) 354: 319-331.

    Google Scholar 

  • Mancilla JG, Fowler MH, Ulinski PS (1998) Responses of regular spiking and fast spiking cells in turtle visual cortex to light flashes. Vis. Neurosci. 15: 979-993.

    Google Scholar 

  • Mancilla JG, Ulinski PS (1996) Temporal structure of compound postsynaptic potentials in visual cortex. In Bower JM, ed. Proceedings of the Fourth Computation and Neural Systems Conference. Academic Press, New York. pp. 227-232.

    Google Scholar 

  • Mancilla JG, Ulinski PS (2001) Role of GABAA-mediated inhibition in controlling the responses of regular spiking cells in turtle visual cortex. Vis. Neurosci. 18: 9-24.

    Google Scholar 

  • Marchiafava PL (1983) The organization of inputs establishes two functional and morphologically identifiable classes of ganglion cells in the retina of the turtle. Vis. Res. 23: 325-338.

    Google Scholar 

  • Marchiafava PL, Weiler R (1980) Intracellular analysis and structural correlates of the organization of inputs to ganglion cells in the retina of the turtle. Proc. R. Soc. Lond. B 208: 103-113.

    Google Scholar 

  • Mazurskaya PS (1974) Organization of receptive fields in the forebrain of Emys orbiculari. Neurosci. Behav. Physiol. 7: 311-318.

    Google Scholar 

  • Millonas MM, Ulinski PS (1997) The dendritic origins of fast prepotentials in pyramidal cells. In: Proceedings of Computational Neuroscience. Academic Press, San Diego.

    Google Scholar 

  • Mulligan KA, Ulinski PS (1990) Organization of geniculocortical projections in turtles: Isoazimuth lamellae in the visual cortex. J. Comp. Neurol. 296: 531-547.

    Google Scholar 

  • Nenadic Z, Ghosh BK, Ulinski PS (2000) Spatiotemporal dynamics in a model of turtle visual cortex. Neurocomputing 32-33: 479-486.

    Google Scholar 

  • Nenadic Z, Ghosh BK, Ulinski PS (2002) Modelling and estimation problems in the turtle visual cortex. IEEE Trans. Biomed. Eng. 49: 753-762.

    Google Scholar 

  • Nicolaus JM, Ulinski PS (1991) Medial and lateral differences in populations of GABAergic neurons in layer 3 of turtle visual cortex. Soc. Neurosci. Abstr. 16: 114.

    Google Scholar 

  • Nicolaus JM, Ulinski PS (1994) Inward rectifying conductances in inhibitory neurons in turtle visual cortex. In: Eeckman F, ed. Neural Systems: Analysis and Modelling 3. Kluwer, Boston. pp. 91-96.

    Google Scholar 

  • Prechtl JC (1994) Visual motion induces synchronous oscillations in turtle visual cortex. Proc. Natl. Acad. Sci. USA 91: 12467-12471.

    Google Scholar 

  • Prechtl JC, Bullock TH, Kleinfeld D (2000) Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex. Proc. Natl. Acad. Sci. 97: 877-882.

    Google Scholar 

  • Prechtl JC, Cohen LB, Mitra PP, Pesaran B, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. 94: 7621-7626.

    Google Scholar 

  • Rainey WT, Ulinski PS (1986) Morphology of neurons in the dorsal lateral geniculate nucleus in turtles of the genera Pseudemys and Chrysemys. J. Comp. Neurol. 253: 440-465.

    Google Scholar 

  • Robbins KA, Senseman DM (1998) Visualizing differences in movies of cortical activity. IEEE Visualization’ 98, 217-224.

    Google Scholar 

  • Seidemann E, Arieli A, Grinvld A, Slovin H (2002) Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 285: 862-865.

    Google Scholar 

  • Senseman DM (1996) Correspondence between visually evoked voltage-sensitive dye signals and synaptic activity recorded in cortical pyramidal cells with intracellular microelectrodes. Vis. Neurosci. 13: 963-977.

    Google Scholar 

  • Senseman DM (1999) Spatiotemporal structure of depolarization spread in cortical pyramidal cell populations evoked by diffuse retinal light flashes. Vis. Neurosci. 16: 65-79.

    Google Scholar 

  • Senseman DM, Robbins KA (1999) Modal behavior of cortical neural networks during visual processing. J. Neurosci. 19: RC3(1-7).

    Google Scholar 

  • Senseman DM, Robbins KA (2002) High-speed VSD imaging of visually evoked cortical waves: Decomposition into intra-and intercortical wave motions. J. Neurophysiol. 87: 1499-1514.

    Google Scholar 

  • Smith LM, Ebner FF, Colonnier M (1980) The thalamocortical projection in Pseudemys turtles: A quantitative electron microscopic study. J. Comp. Neurol. 190: 445-461.

    Google Scholar 

  • Stratford KJ, Mason AJR, Larkman AU, Major G, Jack JJB (1989) The modelling of pyramidal neurons in the visual cortex. In: Durbin R, Miall C, Mitchison G, eds. The Computing Neurone. Addison Wesley, Reading, MA. pp. 296-321.

    Google Scholar 

  • Strogatz SH (1994) Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635-650.

    Google Scholar 

  • Ulinski PS (1986) Organization of the corticogeniculate projections in the turtle, Pseudemys scripta. J. Comp. Neurol. 254: 529-542.

    Google Scholar 

  • Ulinski PS (1990) The cerebral cortex in reptiles. In: Jones EG, Peters A, eds. Cerebral Cortex. Vol. 8A, Comparative Structure and Evolution of Cerebral Cortex, Part I. Plenum Press, NewYork. pp. 139-215.

    Google Scholar 

  • Ulinski PS, Larson-Prior LU, Slater NT (1991) Cortical circuitry underlying visual motion analysis in turtles. In: Arbib M, ed. Visual Structures and Integrated Functions. Springer, Berlin. pp. 307-324.

    Google Scholar 

  • Ulinski PS (1999) Neural mechanisms underlying the analysis of moving visual stimuli. In: Ulinski PS, Jones EG, Peters A, eds. Cerebral Cortex. Vol. 13. Models of Cortical Circuitry. Plenum Press, New York. pp. 283-399.

    Google Scholar 

  • Ulinski PS, Nautiyal J (1986) Organization of the retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys. J. Comp. Neurol. 276: 92-112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nenadic, Z., Ghosh, B.K. & Ulinski, P. Propagating Waves in Visual Cortex: A Large-Scale Model of Turtle Visual Cortex. J Comput Neurosci 14, 161–184 (2003). https://doi.org/10.1023/A:1021954701494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021954701494

Navigation