Skip to main content
Log in

Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels, C., Güntert, P., Billeter, M. and Wüthrich, K. (1997) J. Comput. Chem., 18, 139-149.

    Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O. Shhimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535-542.

    Google Scholar 

  • Blanco, F.J., Ortiz, A.R. and Serrano, L. (1997) J. Biomol. NMR, 9, 347-357.

    Google Scholar 

  • Chou, P.Y. and Fasman, G.D. (1974) Biochemistry, 13, 222-245.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.

    Google Scholar 

  • Croft, D., Kemmink, J., Neidig, K.P. and Oschkinat H. (1997) J. Biomol. NMR, 10, 207-219.

    Google Scholar 

  • Fasman, G.D. (1989) Trends Biochem. Sci., 14, 101-162.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-204.

    Google Scholar 

  • Heinemann, U., Frevert, J., Hofmann, K., Illing, G., Maurer, C., Oschkinat, H. and Saenger, W. (2000) Prog. Biophys. Mol. Biol., 73, 347-362.

    Google Scholar 

  • Huang, K., Andrec, M., Heald, S., Blake, P. and Prestegard, J.H. (1997) J. Biomol. NMR, 10, 45-52.

    Google Scholar 

  • Kay, L.E. (1997) Biochem. Cell Biol., 75, 1-15.

    Google Scholar 

  • Kyngäs, J. and Valjakka, J. (1998) Protein Engin., 11, 345-348.

    Google Scholar 

  • Leutner, M., Gschwind, R.M., Liermann, J., Schwartz, C., Gemmecker, G. and Kessler, H. (1998) J. Biomol. NMR, 11, 31-43.

    Google Scholar 

  • Medek, A., Olejniczak, E.T., Meadows, R.P. and Fesik, S.W. (2000) J. Biomol. NMR, 18, 229-238.

    Google Scholar 

  • Moseley, H.N.B. and Montelione, G.T. (1999) Curr. Opin. Struct. Biol., 9, 635-642.

    Google Scholar 

  • Moseley, H.N.B., Monleon, D. and Montelione, G.T. (2001) Meth. Enzymol., 339, 91-108.

    Google Scholar 

  • Murzin, A.G., Brenner S.E., Hubbard T., and Chothia C. (1995) J. Mol. Biol., 247, 536-540.

    Google Scholar 

  • Musacchio, A., Saraste, M. and Wilmanns, M. (1994) Nat. Struct. Biol., 1, 489-491.

    Google Scholar 

  • Pons, J.L. and Delsuc, M.A. (1999) J. Biomol. NMR, 15, 15-26.

    Google Scholar 

  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J. (1991) J. Biomol. NMR, 1, 217-236.

    Google Scholar 

  • Wishart, D.S. and Case, D.A. (2001) Meth. Enzymol., 338, 3-34.

    Google Scholar 

  • Wishart, D.S. and Nip, A.M. (1998) Biochem. Cell Biol., 76, 153-163.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) J. Biomol. NMR, 4, 171-180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Oschkinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labudde, D., Leitner, D., Krüger, M. et al. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts. J Biomol NMR 25, 41–53 (2003). https://doi.org/10.1023/A:1021952400388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021952400388

Navigation