Skip to main content
Log in

Transport of Neutrally Buoyant and Dense Variably Sized Colloids in a Two-Dimensional Fracture with Anisotropic Aperture

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The transport of monodisperse as well as polydisperse colloid suspensions in a two-dimensional, water saturated fracture with spatially variable and anisotropic aperture is investigated with a particle tracking model. Both neutrally buoyant and dense colloid suspensions are considered. Although flow and transport in fractured subsurface formations have been studied extensively by numerous investigators, the transport of dense, polydisperse colloid suspensions in a fracture with spatially variable and anisotropic aperture has not been previously explored. Simulated snapshots and breakthrough curves of ensemble averages of several realizations of a log-normally distributed aperture field show that polydisperse colloids exhibit greater spreading than monodisperse colloids, and dense colloids show greater retardation than neutrally buoyant colloids. Moreover, it is demonstrated that aperture anisotropy oriented along the flow direction substantially increases colloid spreading; whereas, aperture anisotropy oriented transverse to the flow direction retards colloid movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Salam, A. and Chrysikopoulos, C. V.: 1994, Analytical solutions for one-dimensional colloid transport in saturated fractures, Adv. Water Resour. 17, 283–296.

    Google Scholar 

  • Abdel-Salam, A. and Chrysikopoulos, C. V.: 1995a, Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture, Transport in Porous Media 20, 197–221.

    Google Scholar 

  • Abdel-Salam, A. and Chrysikopoulos, C. V.: 1995b, Analysis of a model for contaminant transport in fractured media in the presence of colloids, J. Hydrol. 165, 261–281.

    Google Scholar 

  • Abdel-Salam, A. and Chrysikopoulos, C. V.: 1996, Unsaturated flow in a quasi-three-dimensional fractured medium with spatially variable aperture, Water Resour. Res. 32(6), 1531–1540.

    Google Scholar 

  • Ang, A. H.-S. and Tang, W. H.: 1975, Probability Concepts in Engineering Planning and Design, Volume 1, Basic Principles, Wiley, New York, NY, p. 409.

    Google Scholar 

  • Baik, M. H. and Hahn, P. S.: 1997, Radionuclide transport facilitated by polydispersed pseudocolloids in the fractured rock media, J. Nucl. Sci. Technol. 34(1), 41–49.

    Google Scholar 

  • Chrysikopoulos, C. V. and Abdel-Salam, A.: 1997, Modeling colloid transport and deposition in saturated fractures, Colloids Surf. A: Physicochem. Eng. Aspects 121, 189–202.

    Google Scholar 

  • Chrysikopoulos, C. V. and Sim, Y.: 1996, One-dimensional virus transport in homogeneous porous media with time dependent distribution coefficient, J. Hydrol. 185, 199–219.

    Google Scholar 

  • de Marsily, G.: 1986, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press, San Diego, CA, p. 440.

    Google Scholar 

  • Domenico, P. A. and Schwartz, F. W.: 1998, Physical and Chemical Hydrogeology, 2nd edn., Wiley, New York, NY, p. 506.

    Google Scholar 

  • Drever, J. I.: 1985, The Chemistry of Weathering, NATO ASI Series. Series C, Mathematical and Physical Sciences, Vol. 149, Reidel, Dordrecht, Holland, p. 325.

    Google Scholar 

  • Fox, R.W. and McDonald, A. T.: 1998, Introduction to Fluid Mechanics, 5th edn., Wiley, New York, NY, p. 762.

    Google Scholar 

  • Grindrod, P. and Lee, A. J.: 1997, Colloid migration in symmetrical non-uniform fractures: Particle tracking in three dimensions, J. Contam. Hydrol. 27, 157–175.

    Google Scholar 

  • Grisak, G. E. and Pickens, J. F.: 1981, An analytical solution for solute transport through fractured media with matrix diffusion, J. Hydrol. 52, 47–57.

    Google Scholar 

  • Gutjahr, A. L.: 1989, Fast Fourier transform for random field generation, Report 4-R58-2690R, New Mexico Institute of Mining and Technology, Socorro, NM.

    Google Scholar 

  • Happel, J. and Brenner, H.: 1965, Low Reynolds Number Hydrodynamics with Applications to Particulate Media, Prentice-Hall, Englewood Cliffs, NJ, p. 553.

    Google Scholar 

  • Higgo, J. J. W., Williams, G. M., Harrison, I., Warwick, P., Gardiner, M. P. and Longworth, G.: 1993, Colloid transport in a glacial sand aquifer, laboratory and field studies, Colloids Surf. A: Physicochem. Eng. Aspects 73, 179–200.

    Google Scholar 

  • Hoffman, J. D.: 1992, Numerical Methods for Engineers and Scientists, McGraw-Hill, New York, NY, p. 825.

    Google Scholar 

  • Ibaraki, M. and Sudicky, E. A.: 1995, Colloid-facilitated contaminant transport in discretely fractured porous media. 1. Numerical formulation and sensitivity analysis, Water Resour. Res. 31(12), 2945–2960.

    Google Scholar 

  • James, S. C. and Chrysikopoulos, C. V.: 1999, Transport of polydisperse colloid suspensions in a single fracture, Water Resour. Res. 35(3), 707–718.

    Google Scholar 

  • James, S. C. and Chrysikopoulos, C. V.: 2000, Polydisperse colloid transport through a variable aperture fracture, Water Resour. Res. 36(6), 1457–1466.

    Google Scholar 

  • James, S. C. and Chrysikopoulos, C. V.: 2001, An efficient particle tracking equation with specified spatial step for the solution of the diffusion equation, Chem. Eng. Sci. 56(23), 6535–6543.

    Google Scholar 

  • Johns, R. A., Steade, J. S., Costanier, L. M. and Roberts, P. V.: 1993, Nondestructive measurements of fracture aperture in crystalline rock cores using X-ray computed tomography, J. Geophys. Res. 98(B2), 1889–1900.

    Google Scholar 

  • Keller, A. A.: 1998, High resolution non-destructive measurement and characterization of fracture apertures, Int. J. Rock Mech. Min. Sci. 35(8), 1037–1050.

    Google Scholar 

  • Knapp, R. B., Chiarappa, M. L. and Durham, W. B.: 2000, An experimental exploration of the transport and capture of abiotic colloids in a single fracture, Water Res. 36(11), 3139–3149.

    Google Scholar 

  • Ledin, A., Karlsson, S., Duker, A. and Allard, B.: 1994, Measurements in situ of concentration and size distribution of colloidal matter in deep groundwater by photon correlation spectroscopy, Water Res. 28(7), 1539–1545.

    Google Scholar 

  • Liu, H. H., Bodvarrson, G. S. and Pan, L.: 2000, Determination of particle transfer in random walk particle methods for fractured porous media, Water Resour. Res. 36(3), 707–713.

    Google Scholar 

  • McCarthy, J. F. and Degueldre, C.: 1993, in: J. Buffle and H. P. van Leeuwen (eds), Environmental Particles, Chap. 6, Vol. 2, Lewis, Boca Raton, FL, p. 247.

    Google Scholar 

  • McDowell-Boyer, L. M., Hunt, J. R. and Sitar, N.: 1986, Particle transport through porous media, Water Resour. Res. 22, 1901–1921.

    Google Scholar 

  • Mills, W. B., Liu, S. and Fong, F. K.: 1991, Literature review and model (COMET) for colloid/metals transport in porous media, Ground Water 29(2), 199–208.

    Google Scholar 

  • Moreno, L., Tsang, Y.W., Tsang, C. F., Hale, F. V. and Neretnieks, I.: 1988, Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resour. Res. 24, 2033–2048.

    Google Scholar 

  • Neretnieks, I.: 1983, A note on fracture flow dispersion mechanisms in the ground, Water Resour. Res. 23, 561–570.

    Google Scholar 

  • Novakowski, K. S., Evans, G. V., Lever, D. A. and Raven, K.: 1985, A field example of measuring hydrodynamic dispersion in a single fracture, Water Resour. Res. 21, 1165–1174.

    Google Scholar 

  • Oswald, J. G. and Ibaraki, M.: 2001, Migration of colloids in discretely fractured porous media: Effect of colloidal matrix diffusion, J. Contam. Hydrol. 52, 213–244.

    Google Scholar 

  • Ouyang, Y., Shinde, D., Mansell, R. S. and Harris, W.: 1996, Colloid-enhanced transport of chemicals in subsurface environments - A review, Crit. Rev. Environ. Sci. Technol. 26(2), 189–204.

    Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W. and Flannery, B.: 1992, Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd edn., Cambridge University Press, Cambridge, UK, p. 963.

    Google Scholar 

  • Reimus, P. W.: 1995, The use of synthetic colloids in tracer transport experiments in saturated rock fractures, Report LA-13004-T, Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • Russel, W. B., Saville, D. A. and Schowalter, W. R.: 1989, Colloidal Dispersions, Cambridge University Press, Cambridge, UK, p. 525.

    Google Scholar 

  • Smith, P. A. and Degueldre, C.: 1993, Colloid-facilitated transport of radionuclides through fractured media, J. Contam. Hydrol. 13, 143–166.

    Google Scholar 

  • Stumm, W. and Morgan, J. J.: 1981, Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn., Wiley, New York, NY, p. 780.

    Google Scholar 

  • Tatalovich, M. E., Lee, K. Y. and Chrysikopoulos, C. V.: 2000, Modeling the transport of contaminants originating from the dissolution of DNAPL pools in aquifers in the presence of dissolved humic substances, Transport in Porous Media 38(1/2), 93–115.

    Google Scholar 

  • Thompson, M. E. and Brown, S. R.: 1991, The effect of anisotropic surface roughness on flow and transport in fractures, J. Geophys. Res. 96(B13), 21923–21932.

    Google Scholar 

  • Thompson, A. F. B. and Gelhar, L. W.: 1990, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res. 26(10), 2541–2562.

    Google Scholar 

  • Toran, L. and Palumbo, A. V.: 1992, Colloid transport through fractured and unfractured laboratory sand columns, J. Contam. Hydrol. 9, 289–303.

    Google Scholar 

  • Tsang, Y. W. and Tsang, C. F.: 1987, Channel model of flow through fractured media, Water Resour. Res. 23, 467–479.

    Google Scholar 

  • van der Lee, J., Ledoux, E. and de Marsily, G.: 1992, Modeling of colloidal uranium transport in a fractured medium, J. Hydrol. 139, 135–158.

    Google Scholar 

  • Vogler, E. T. and Chrysikopoulos, C. V.: 2001, Dissolution of nonaqueous phase liquid pools in anisotropic aquifers, Stochastic Environ. Res. Risk Assess. 15, 33–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrysikopoulos, C.V., James, S.C. Transport of Neutrally Buoyant and Dense Variably Sized Colloids in a Two-Dimensional Fracture with Anisotropic Aperture. Transport in Porous Media 51, 191–210 (2003). https://doi.org/10.1023/A:1021952226861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021952226861

Navigation