Skip to main content
Log in

Effects of Configurational Fluctuation on Electronic Coupling for Charge Transfer Dynamics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We advance a theory for the effects of bridge configurational fluctuations on the electronic coupling for electron transfer reactions in donor-bridge-acceptor systems. The theory of radiationless transitions was applied for activationless electron transfer, where the nuclear Franck–Condon constraints are minimized, with the initial vibronic state interacting directly with the final vibronic manifold, without the need for thermal activation. Invoking the assumption of energy-independent coupling, the time-dependent initial state population probability was analyzed in terms of a cumulant expansion. Two limiting situations were distinguished, i.e. the fast configurational fluctuation limit, where the electron transfer rate is given in terms of the configurational average of me squared electronic coupling, and the slow configurational fluctuation limit, where the dynamics is determined by a configurational averaging over a static distribution of electron transfer probability densities. The correlation times for configurational fluctuations of the electronic coupling will be obtained from the analysis of molecular dynamics, in conjunction with quantum mechanical calculations of the electronic coupling, to establish the appropriate limit for electron transfer dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Levich, V.G. and Dogonadze, R.R., Dokl. Akad. Nauk SSSR, 1959, vol. 124, p. 123.

    Google Scholar 

  2. Levich, V.G. and Dogonadze, R.R., Czech. Chem. Commun., 1961, vol. 26, p. 193.

    Google Scholar 

  3. Dogonadze, R.R., Dokl. Akad. Nauk SSSR, 1960, vol. 133, p. 1369.

    Google Scholar 

  4. Dogonadze, R.R., Dokl. Akad. Nauk SSSR, 1962, vol. 142, p. 1108.

    Google Scholar 

  5. Marcus, R.A. and Sutin, N., Biochim. Biophys. Acta, 1975, vol. 811, p. 265.

    Google Scholar 

  6. Bixon, M. and Jortner, J., Adv. Chem. Phys., 1999, vol. 106, p. 35.

    Google Scholar 

  7. Logan, J., Kestner, N.R., and Jortner, J., J. Phys. Chem., 1974, vol. 78, p. 2148.

    Google Scholar 

  8. Nitzan, A. and Jortner, J., J. Chem. Phys., 1972, vol. 56, p. 3360.

    Google Scholar 

  9. Beratan, D.N., J. Am. Chem. Soc., 1986, vol. 108, p. 4321.

    Google Scholar 

  10. Heitele, H. and Michel-Beyerle, M.E., Chem. Phys. Lett., 1987, vol. 134, p. 273.

    Google Scholar 

  11. Warman, J.M., De Haas, M.P., Paddon-Row, M.N., et al., Nature (London), 1986, vol. 320, p. 615.

    Google Scholar 

  12. Larsson, S. and Volosov, A., J. Chem. Phys., 1986, vol. 85, p. 2548.

    Google Scholar 

  13. Closs, G.L. and Miller, J.R., Science, 1988, vol. 140, p. 440.

    Google Scholar 

  14. Hartwick, B., Bieser, B., Langenbecher, T., et al., Biophys. J., 1998, vol. 72, p. 8.

    Google Scholar 

  15. Plato, M., Michel-Beyerle, M.E., Bixon, M., and Jortner, J., FEBS Lett., 1989, vol. 29, p. 70.

    Google Scholar 

  16. Bixon, M., Jortner, J., and Michel-Beyerle, M.E., Chem. Phys., 1995, vol. 197, p. 389.

    Google Scholar 

  17. Jortner, J., Bixon, M., Langenbacher, T., and Michel-Beyerle, M.E., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, p. 12759.

    Google Scholar 

  18. Newton, M.D., Chem. Rev., 1991, vol. 91, p. 767.

    Google Scholar 

  19. Gray, H.B. and Winkler, J.R., Annu. Rev. Biochem., 1996, vol. 65, p. 537.

    Google Scholar 

  20. Dmochowski, I.J., Crane, B.R., Winkler, J.R., and Gray, H.B., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 12987.

    Google Scholar 

  21. Heller, A., Faraday Discuss., 2000, vol. 116, p. 1.

    Google Scholar 

  22. Alivisatos, A.P., Johnsson, K.P., Wilson, T.E., et al., Nature (London), 1996, vol. 382, p. 609.

    Google Scholar 

  23. Schuster, G.B., Acc. Chem. Res., 2000, vol. 33, p. 253.

    Google Scholar 

  24. Giese, B., Acc. Chem. Res., 2000, vol. 33, p. 631.

    Google Scholar 

  25. Williams, T.T., Odon, D.T., and Barton, J.K., J. Am. Chem. Soc., 2000, vol. 122, p. 9048.

    Google Scholar 

  26. Lewis, F.D., Liu, X., Liu, J., et al., Nature (London), 2000, vol. 51, p. 406.

    Google Scholar 

  27. Bixon, M., Giese, B., Wessely, S., et al., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 11713.

    Google Scholar 

  28. Bixon, M. and Jortner, J., J. Phys. Chem. B, 2000, vol. 104, p. 3906.

    Google Scholar 

  29. Bixon, M. and Jortner, J., J. Am. Chem. Soc., 2001, vol. 123, p. 12556.

    Google Scholar 

  30. Ungar, L.W., Newton, M.D., and Voth, G.A., J. Phys. Chem. B, 1999, vol. 103, p. 7367.

    Google Scholar 

  31. Cheatham, T.E., III and Kollman, P.A., Annu. Rev. Phys. Chem., 2000, vol. 51, p. 435.

    Google Scholar 

  32. Voityuk, A.A., Siriwong, K., and Rösch, N., Phys. Chem. Chem. Phys., 2001, vol. 3, p. 5421.

    Google Scholar 

  33. Barnett, R.N., Cleveland, C.L., Joy, A., et al., Science, 2001, vol. 294, p. 567.

    Google Scholar 

  34. Voityuk, A.A., Rosch, N., Bixon, M., and Jortner, J., J. Phys. Chem. B, 2000, vol. 104, p. 9740.

    Google Scholar 

  35. Voityuk, A.A., Jortner, J., Bixon, M., and Rösch, N., J. Chem. Phys., 2001, vol. 114, p. 5614.

    Google Scholar 

  36. Mikkelsen, K.V., Ulstrup, J., and Zakaraya, M.G., J. Am. Chem. Soc., 1989, vol. 111, p. 1315.

    Google Scholar 

  37. Kuznetsov, A.M., Vigdorovich, M.D., and Ulstrup, J., Chem. Phys., 1993, vol. 176, p. 539.

    Google Scholar 

  38. Onuchic, J.N. and Da Gama, A.A.S., Theor. Chim. Acta, 1986, vol. 69, p. 89.

    Google Scholar 

  39. Beratan, D.N., Onuchic, J.N., and Hopfield, J.J., J. Chem. Phys., 1987, vol. 86, p. 4488.

    Google Scholar 

  40. Tang, J., J. Chem. Phys., 1993, vol. 98, p. 6263.

    Google Scholar 

  41. Goychuk, I.A., Petrov, E.G., and May, V., J. Chem. Phys., 1995, vol. 103, p. 4937.

    Google Scholar 

  42. Medvedev, E.S. and Stuchebrukhov, A.A., J. Chem. Phys., 1997, vol. 107, p. 3821.

    Google Scholar 

  43. Xie, Q., Archontis, G., and Skourtis, S.S., Chem. Phys. Lett., 1999, vol. 312, p. 237.

    Google Scholar 

  44. Antennas and Reaction Centres of Photosynthetic Bacteria, Michel-Beyerle, M.E., Ed., Berlin: Springer, 1985.

    Google Scholar 

  45. The Photosynthetic Bacterial Reaction Center, Breton, J. and Vermeglio, A., Eds., New York: Plenum, 1988.

    Google Scholar 

  46. Kubo, R., J. Phys. Soc. Jpn., 1962, vol. 17, p. 1100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bixon, M., Jortner, J. Effects of Configurational Fluctuation on Electronic Coupling for Charge Transfer Dynamics. Russian Journal of Electrochemistry 39, 3–8 (2003). https://doi.org/10.1023/A:1021951109933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021951109933

Keywords

Navigation