Skip to main content
Log in

Studies on Mesoporous Self-Organizing Aluminosilica

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A detailed study on the preparation of highly ordered MCM-41 molecular sieves based on our new “delayed neutralization” process is presented. The rate of acidification does not have an apparent effect on the XRD patterns of MCM-41 but affects the morphology. The synthesized products give a thicker constant wall thickness (about 1.70 nm) of mesopore and a sharp pore size distribution. However, the structural order depends on the carbon chain length, the amount of alcohols as cosurfactants, and the synthetic temperature. A tubular morphology of the MCM-41 material, with hollow tubules 0.3 to 3 μm in diameter, can be obtained by careful control of the surfactant–water content and the rate of condensation of silica under high-alkalinity conditions. In tubules-within-a-tubule, the wall of the tubule consists of coaxial cylindrical pores of nanometers characteristic of MCM-41. The hierarchical order structure takes place through a “liquid crystal phase transformation” mechanism in which an anisotropic membrane-to-tubule phase change is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Schaefer (1994). MRS Bull. 19, 14.

    Google Scholar 

  2. G. A. Ozin and C. Gil (1989). Chem. Rev. 89, 1749.

    Google Scholar 

  3. S. L. Gillet (1996). Nanotechnology 7, 168.

    Google Scholar 

  4. G. D. Stucky and J. E. MacDaugall (1990). Science 247, 669.

    Google Scholar 

  5. D. D. Awschalom, D. P. DiVincenzo, and J. F. Smyth (1992). Science 258, 414.

    Google Scholar 

  6. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck (1992). Nature 359, 710.

    Google Scholar 

  7. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, and J. L. Schlenker (1992). J. Am. Chem. Soc. 114, 10834.

    Google Scholar 

  8. G. D. Stucky (1996). 11th International Zeolite Conference, Plenary Lecture, Seoul Korea.

  9. S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia (1995). Science 269, 1242; (b) S. A. Bagshaw, F. Direnzo, and F. Fajula (1996) Chem. Commun. 2209.

    Google Scholar 

  10. D. M. Antonelli and J. Y. Ying (1995). Angew. Chem. Int. Ed. Engl. 34, 2014.

    Google Scholar 

  11. S. Inagaki, Y. Fukushima, and K. Kuroda (1993). J. Chem. Soc. Chem. Commun. 680; (b) T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato (1990). Bull. Chem. Soc. Japan 63, 988.

    Google Scholar 

  12. W. M. Gelbart and A. Ben-Shaul (1996). J. Phys. Chem. 100, 13169.

    Google Scholar 

  13. Z. Luan, H. He, W. Zhou, C.-F. Cheng, and J. Klinowski (1995). J. Chem. Soc. Faraday Trans. 91, 2955.

    Google Scholar 

  14. C.-F. Cheng, Z. Luan, and J. Klinowski (1995). Langmuir 11, 2815.

    Google Scholar 

  15. P. T. Tanev, M. Chibwe, and T. J. Pinnavaia (1994). Nature 368, 321.

    Google Scholar 

  16. K. M. Reddy, I. Moudrakovski, and A. Sayari (1994). J. Chem. Soc. Chem. Commun. 1059.

  17. A. Sayari (1996). Chem. Mater. 8, 1840.

    Google Scholar 

  18. By now there is already a large patent literature providing a wealth of information about the use of MCM-41 as a catalyst for petrochemical applications. For a short review in the published literature, see Ref. (17).

    Google Scholar 

  19. H. P. Lin, S. Cheng, and C.-Y. Mou (1996). Microporous Mater. 10, 111.

    Google Scholar 

  20. H. P. Lin, S. Cheng, and C.-Y. Mou (1996). J. Chin. Chem. Soc. 43, 375.

    Google Scholar 

  21. H. P. Lin, S. Cheng, and C.-Y. Mou (1996). Science 273, 765.

    Google Scholar 

  22. S. Schacht, Q. Hou, I. G. Voigtmartin, G. D. Stucky, and F. Schüth (1996). Science 273, 768.

    Google Scholar 

  23. S. Mann and G. A. Ozin (1996). Nature 382, 313; (b) H. Yang, N. Coombs, I. Sokolov, and G. A. Ozin (1996). Nature 381, 589.

    Google Scholar 

  24. P. T. Tanev and T. J. Pinnavaia (1996). Science 271, 1267; (b) P. T. Tanev, Y. Liang, and T. J. Pinnavaia (1997). J. Am. Chem. Soc. 119, 8616.

    Google Scholar 

  25. M. Grün, I. Lauer, and K. K. Unger (1997). Adv. Mater. 9, 254.

    Google Scholar 

  26. H. Hou, Q. J. Feng, F. Schüth, and G. D. Stucky (1997). Chem. Mater. 9, 14.

    Google Scholar 

  27. H. Yang, N. Coombs, and G. A. Ozin, (1997). Nature 386, 692; (b) A. Ozin, G. H. Yang, I. Sokolov, and N. Coombs (1997). Adv. Mater. 9, 662.

    Google Scholar 

  28. S. Mann and G. A. Ozin (1996). Nature 382, 313.

    Google Scholar 

  29. I. A. Aksay, M. Trau, S. Mann, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, and S. M. Gruner (1996). Science 273, 892; (b) K. M. McGrath, D. M. Dabbs, N. Yao, I. A. Aksay, and S. M. Gruner (1997). Science 277, 552.

    Google Scholar 

  30. S. A. Davisd, S. L. Burkett, N. H. Mendelson, and S. Mann (1997). Nature 385, 420.

    Google Scholar 

  31. J. M. Kim, J. H. Kwak, S. Jun, and R. Ryoo (1995). J. Phys. Chem. 99, 16742; (b) R. Ryoo and S. Jun (1997). J. Phys. Chem. B 101, 317.

    Google Scholar 

  32. J. W. White (1997). Langmuir 13, 6363; (b) K. J. Edler and J. W. White (1997). Chem. Mater. 9, 1226.

    Google Scholar 

  33. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B. F. Chmelka (1993). Science 261, 1299.

    Google Scholar 

  34. N. Coustel, F. D. Renzo, and F. Fajula (1994). J. Chem. Soc. Chem. Commun. 967.

  35. A. Sayari, I. Moudrakovski, C. Danumah, C. I. Ratcliffe, J. A. Ripmeester, and K. F. Preston (1995). J. Phys. Chem. 99, 16373.

    Google Scholar 

  36. C. F. Cheng, Z. Luan, and J. Klinowski (1995). Langmuir 11, 2815; (b) J. S. Beck, J. C. Vartuli, G. J. Kennedy, C. T. Kresge, W. J. Roth, and S. E. Schramm (1994). Chem. Mater. 6, 1816.

    Google Scholar 

  37. P. J. Branton, P. G. Hall, and K. S. W. Sing (1993). J. Chem. Soc. Chem. Commun. 1257.

  38. P. J. Branton, P. G. Hall, K. S. W. Sing, H. Reichert, F. Schüth, and K. K. Unger (1994). J. Chem. Soc. Faraday Trans. 90, 2965.

    Google Scholar 

  39. S. Candau and R. Zaana (1981). J. Colloid Interface Sci. 84, 206.

    Google Scholar 

  40. M. Almgren and S. Swarup (1983). J. Colloid Interface Sci. 91, 256.

    Google Scholar 

  41. G. J. Tiddy (1980). Phys. Rev. 57, 1.

    Google Scholar 

  42. C. Y. Chen, S. Q. Xiao, and M. E. Davis (1995). Microporous Mater. 4, 1.

    Google Scholar 

  43. C. Y. Chen, H. X. Li, and M. E. Davis (1993). Microporous Mater. 2, 17; (b) C. Y. Chen, S. L. Burkett, H. X. Lin, and M. E. Davis (1993). Microporous Mater. 2, 27.

    Google Scholar 

  44. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, and G. D. Stucky (1994). Chem. Mater. 6, 1176; (b) Q. Hou, R. Leon, P. M. Petroff, and G. D. Stucky (1995). Science 268, 1324; (c) Q. Hou, D. I. Margolese, and G. D. Stucky (1996). Chem. Mater. 8, 1147.

    Google Scholar 

  45. A. Firouzi, D. Kumar, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicoi, D. Margolese, G. D. Stucky and B. F. Chmelka (1995). Science 267, 1138.

    Google Scholar 

  46. J. N. Israolachvili, D. J. Mitchell, and B. W. Ninham (1976). J. Chem. Soc. Faraday Trans. 2 72, 1525.

    Google Scholar 

  47. D. Langevin (1992). Annu. Rev. Phys. Chem. 43, 341.

    Google Scholar 

  48. C. Tanford, The Hydrophobic Effect (Wiley, New York, 1973).

    Google Scholar 

  49. W. Helfrich (1978). Z. Naturforsch. 33a, 305.

    Google Scholar 

  50. L. H. Burckle, in B. U. Haq and A. Boersna (eds.), Introduction to Marine Micropaleontology (Elsevier, Amsterdam, 1979), pp. 245–275.

    Google Scholar 

  51. J. M. Schnur (1993). Science 262, 1669.

    Google Scholar 

  52. B. N. Thomas, C. R. Safinya, R. J. Plano, and N. A. Clark (1995). Science 267, 1635.

    Google Scholar 

  53. L. Radzihovsky and J. Toner (1995). Phys. Rev. Lett. 75, 4752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HP., Mou, CY. Studies on Mesoporous Self-Organizing Aluminosilica. Journal of Cluster Science 10, 271–293 (1999). https://doi.org/10.1023/A:1021925629248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021925629248

Navigation