Metabolic Brain Disease

, Volume 17, Issue 4, pp 367–373 | Cite as

Valproate-Induced Hyperammonemic Encephalopathy

  • Alberto Verrotti
  • Daniela Trotta
  • Guido Morgese
  • Francesco Chiarelli


Valproic acid (VPA) is an effective anticonvulsant useful in many types of epilepsy and, although it is usually well tolerated, it has been associated with many neurological and systemic side effects. Among these, one of the most important is VPA-induced hyperammonemic encephalopathy (VHE): its typical signs are acute onset of impaired consciousness, focal neurologic symptoms, and increased seizure frequency. The pathogenesis of VHE is still unclear, but it has been suggested that hyperammonemia can produce encephalopathy via inhibition of glutamate uptake by astrocytes which may lead to potential neuronal injury and perhaps cerebral edema. Glutamine production is increased, whereas its release is inhibited in astrocytes exposed to ammonia. The elevated glutamine increases intracellular osmolarity, promoting an influx of water with resultant astrocytic swelling. This swelling could compromise astrocyte energy metabolism and result in cerebral edema with increased intracranial pressure. Moreover, VHE seems to be more frequently in patients with carnitine deficiency or with congenital urea cycle enzymatic defects.

Valproate encephalopathy hyperammonemia carnitine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleton, R.E., Farrel, K., and Applegarth, D.A. (1990). The high incidence of valproate hepatotoxicity in infants may relate to familial metabolic defects. Can. J. Neurol. Sci. 17:145-148.Google Scholar
  2. Bicknese, A.R., May, W., and Hickey, W.F. (1992). Early childhood hepatocerebral degeneration misdiagnosed as valproate hepatotoxicity. Ann. Neurol. 32:767-775.Google Scholar
  3. Blindauer, K.A., Harrington, G., Morris, G.L., III, and Ho, K. C. (1998). Fulminant progression of demyelinating disease after valproate-induced encephalopathy. Neurology 51:292-295.Google Scholar
  4. Bryant, A.E., and Dreifuss, F.E. (1996). Valproic acid hepatic fatalities. III: U.S. experience since 1986. Neurology 46:465-469.Google Scholar
  5. Chapoy, P.R., Angelini, C., Brown, W.J., Stiff, J.E., Shug, A.L., and Cederbaum, S.D. (1980). Systemic carnitine deficiency-A treatable inherited lipid-storage disease presenting as Reye's syndrome. N. Engl. J. Med. 303:1389-1394.Google Scholar
  6. Chayasirisobbon, S., and Russel, M. (1983). Valproic acid and intractable seizures in severely brain-damaged patients. Neurology 33:99-101.Google Scholar
  7. Coulter, D.L., and Allen, R.J. (1980). Secondary hyperammonemia. A possible mechanism for valproate encephalopathy. Lancet i:1310-1311.Google Scholar
  8. Coulter, D.L., Allen, R.J., and Arbor, A. (1981). Hyperammonemia with valproic acid therapy. J. Pediatr. 99:317-319.Google Scholar
  9. Dodson, W.E., and Tasch, V. (1981). Pharmacology of valproic acid in children with severe epilepsy: Clearance and hepatotoxicity. Neurology 31:1047-1050.Google Scholar
  10. Dreifuss, F.E. (1983). Lennox-Gastaut syndrome. In: Dreifuss, F.E. (ed.), Pediatric Epileptology. Classification and Management of Seizures in the Child, Wright, Boston, MA.Google Scholar
  11. Duarte, J., Macias, S., Coria, F., Fernandez, E., and Clavaria, L.E. (1993). Valproate-induced coma: Case report and literature review. Ann. Pharmacother. 27:582-583.Google Scholar
  12. Fraser, C.M., Sills, G.J., Forrest, G., Thompson, G.G., and Brodie, M.J. (1999). Effects of antiepileptic drugs on glutamine synthetase activity in mouse brain. Br. J. Pharmacol. 126:1634-1638.Google Scholar
  13. Gago, M.C., Novo, I., and Segade, S.R. (1990). Effects of valproic acid on the urea cycle and carnitine metabolism. Int. Pediatr. 5:54-56.Google Scholar
  14. Gidal, B.E., Inglese, C.M., Meyer, J.F., Pitterle, M.E., Antonopoulos, J., and Rust, R.S. (1997). Diet-and valproate-induced transient hyperammonemia: Effect of L-carnitine. Pediatr. Neurol. 16:301-305.Google Scholar
  15. Haidukewych, D., John, G., Zielinski, J.J., and Rodin, E.A. (1985). Chronic valproic acid therapy and incidence of increases in venous plasma ammonia. Ther. Drug Monit. 7:290-294.Google Scholar
  16. Hamer, H.M., Knake, S., Schomburg, U., and Rosenow, F. (2000). Valproate-induced hyperammonemic encephalopathy in the presence of topiramate. Neurology 54:230-232.Google Scholar
  17. Honeycutt, D., Callahan, K., Rutledge, L., and Evans, B. (1992). Heterozygote ornithine transcarbamylase deficiency presenting as symptomatic hyperammonemia during initiation of valproate therapy. Neurology 42:666-668.Google Scholar
  18. Kay, J.D., Hilton-Jones, D., and Hyman, N. (1986). Valproate toxicity and ornithine carbamoyltransferase deficiency. Lancet ii:1283-1284.Google Scholar
  19. Kifune, A., Kubota, F., Shibata, N., Akata, T., and Kikuchi, S. (2000). Valproic acid-induced hyperammonemic encephalopathy with triphasic waves. Epilepsia 41:909-912.Google Scholar
  20. Koch, K.M., Wilensky, A.J., and Levy, R. H. (1989). Beta-oxidation of valproic acid. Effects of fasting and glucose in humans. Epilepsia 30:782-789.Google Scholar
  21. Laub, M.C. (1986). Nutritional influence on serum ammonia in young patients receiving sodium valproate. Epilepsia 27:55-59.Google Scholar
  22. Leao, M. (1995). Valproate as a cause of hyperammonemia in heterozygotes with ornithine-transcarbamylase deficiency. Neurology 45:593-594.Google Scholar
  23. Lenn, N.J., Ellis, W.G., and Washburn, E.R. (1990). Fatal hepatocerebral syndrome in siblings discordant for exposure to valproate. Epilepsia 31:578-583.Google Scholar
  24. Marescaux, C., Warter, J.M., Micheletti, G., Rumbach, L., Coquillat, G., and Kurtz, D. (1982). Stuporous episodes during treatment with sodium valproate: Report of seven cases. Epilepsia 23:297-305.Google Scholar
  25. Marescaux, C., Warter, J.M., Laroye, M., Rumbach, L., Micheletti, G., Koehl, C., et al. (1983). Le valproate de sodium: une drogue Hyperammniémiante. Etude chez l'épileptique et chez le volontaire sain. J. Neurol. Sci. 58:195-198.Google Scholar
  26. Marini, A.M., Zaret, B.S., and Beckner, R.R. (1988). Hepatic and renal contributions to valproate-induced hyperammonemia. Neurology 38:365-371.Google Scholar
  27. Matsuda, I., Ohtani, Y., and Ninomiya, N. (1986). Renal handling of carnitine in children with carnitine deficiency and hyperammonemia associated with valproate therapy. J. Pediatr. 109:131-133.Google Scholar
  28. Murphy, J.V., and Marquardt, K. (1982). Asymptomatic hyperammonemia in patients receiving valproic acid. Arch. Neurol. 39:591-593.Google Scholar
  29. Noremberg, M.D. (1996). Astrocytic-ammonia interactions in hepatic encephalopathy. Semin. Liver Dis. 16:245-253.Google Scholar
  30. Oechsner, M., Steen, C., Sturenburg, H.J., and Kohlschutter, A. (1998). Hyperammonaemic encephalopathy after initiation of valproate therapy in unrecognised ornithine transcarbamylase deficiency. J. Neurol. Neurosurg. Psychiatry 64:680-682.Google Scholar
  31. Ohtani, Y., Endo, F., and Matsuda, I. (1982). Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J. Pediatr. 101:782-785.Google Scholar
  32. Porter, R.J. (1984). Therapy: General considerations. In: Walton, J.N. (ed.), Major Problems in Neurology. Vol. 12: Epilepsy: 100 Elementary Principles, Saunders, London, p. 69.Google Scholar
  33. Ratnaike, R.N., Schapel, G.J., Purdie, G., Rischbieth, R.H.C., and Hoffmann, S. (1986). Hyperammonemia and hepatotoxicity during chronic valproate therapy: Enhancement by combination with other antiepileptic drugs. Br. J. Clin. Pharmacol. 22:100-103.Google Scholar
  34. Rumbach, L., Cremel, G., and Marescaux, C. (1989). Valproate-induced hyperammonemia of renal origin: Effects of valproate on gluatmine transport in rat kidney mitochondria. Biochem. Pharmacol. 38:3963-3967.Google Scholar
  35. Sackellares, J.C., Lee, S.I., and Dreifuss, F.E. (1979). Stupor following administration of valproic acid to patients receiving other antiepileptic drugs. Epilepsia 20:697-703.Google Scholar
  36. Sakemi, K., and Takada, G. (1998). Effect of carnitine on valproic acid concentrations in serum, brain, and liver. Pediatr. Neurol. 18:331-333.Google Scholar
  37. Sakir, A., Vildan, B., Mehdi, T., Ozlem, H., Refik, B., and Levent, K. (1997). Asymptomatic hyperammonemia in children treated with valproic acid. J. Child Neurol. 12:461-463.Google Scholar
  38. Sato, S., White, B.G., and Penry, J.K. (1982). Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology 2:157-159.Google Scholar
  39. Sherard, E.S., Steinman, G.S., and Couri, D. (1980). Treatment of childhood epilepsy with valproic acid: Result of the first 100 patients in a 6-month trial. Neurology 30:31-35.Google Scholar
  40. Sills, J.A., Trefor-Jones, R.H., and Taylor, W.H. (1980). Valproate, hyperammonemia and hyperglycinemia. Lancet ii:260-261.Google Scholar
  41. Stephens, J.R., and Levy, R.H. (1994). Effects of valproate and citrulline on ammonium-induced encephalopathy. Epilepsia 35:164-171.Google Scholar
  42. Thom, H., Carter, P.E., Cole, G.F., and Stevenson, K.L. (1991). Ammonia and carnitine concentrations in children treated with sodium valproate compared with other anticonvulsant drugs. Dev. Med. Child Neurol. 33:795-799.Google Scholar
  43. Verrotti, A., Greco, R., Morgese, G., and Chiarelli, F. (1999). Carnitine deficiency and hyperammonemia in children receiving valproic acid with and without other anticonvulsant drugs. Int. J. Clin. Lab. Res. 29:36-40.Google Scholar
  44. Warter, J.M., Marescaux, C., Rumbach, L., Galmiche, J., Micheletti, G., Koehl, C., et al. (1981). L'hyperammoniémie isolée: une consequence fréquente des traitements par la valproate de sodium. Nouv. Presse Med. 10:3406-3409.Google Scholar
  45. Warter, J.M., Marescaux, C., Chabrier, G., Rumbach, L., Micheletti, G., Reitzer, B., et al. (1984). Increase of valproate-induced hyperammonemia in normal subjects by carbohydrate intake. Neurology 34:1487-1490.Google Scholar
  46. Williams, C.A., Tiefenbach, S., and McReynolds, J.W. (1984). Valproic acid-induced hyperammonemia in mentally retarded adults. Neurology 34:550-553.Google Scholar
  47. Wyllie, E., Wyllie, R., Rothner, A.D., Erenberg, G., and Cruse, R.P. (1983). Valproate-induced hyperammonemia in asymptomatic children. Cleve. Clin. Q. 50:275-278.Google Scholar
  48. Zaccara, G., Campostrini, R., Paganini, M., Messori, A., Valenza, T., Arnetoli, G., et al. (1984). Acute changes of blood ammonia may predict short-term adverse effects of valproic acid. Neurology 34:1519-1521.Google Scholar
  49. Zaccara, G., Campostrini, R., Paganini, M., Messori, A., Valenza, T., Arnetoli, G., et al. (1987). Long-term treatment with sodium valproate: Monitoring of venous ammonia concentrations and adverse effects. Ther. Drug Monit. 9:34-37.Google Scholar
  50. Zaret, B.S., Beckner, R. R., Marini, A. M., Wagle, W., and Passarelli, C. (1982). Valproate-induced hyperammonemia without clinical hepatic dysfunction. Neurology 32:206-209.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Alberto Verrotti
  • Daniela Trotta
  • Guido Morgese
  • Francesco Chiarelli

There are no affiliations available

Personalised recommendations