Skip to main content
Log in

Isozyme Variability in Plants Regenerated from Calli of Cereus peruvianus (Cactaceae)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Morphological and isozyme variation was observed among plants regenerated from callus cultures of Cereus peruvianus. Different morphological types of shoots (68%) were observed in 4-year-old regenerated plants, while no distinct morphological variants were observed in plants grown from germinated seeds. Isozyme patterns of 633 plants regenerated from calli and of 261 plants grown from germinated seeds showed no variation in isocitrate dehydrogenase isozyme, and the differential sorbitol dehydrogenase, alcohol dehydrogenase, malate dehydrogenase, acid phosphatase, and peroxidase isozyme patterns observed in regenerated plants were attributed to nonallelic variation. Allelic variation was detected at three isoesterase loci. The proportion of polymorphic loci for both populations was 13.6% and the deviation from Hardy–Weinberg equilibrium for the Est-1 and Est-7 loci observed in somaclones was attributed to the manner in which the regenerant population was established. The high values for genetic identity among regenerant and seed-grown plant populations are in accordance with the low levels of interpopulation genetic divergence. In somaclones of C. peruvianus, morphological divergence was achieved within a short time but was not associated with any isozyme changes and also was not accompanied by biochemical genetic divergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alvarez, M., Costa, S. C., Utumi, H., Huber, A., Beck, R., and Fontana, J. D. (1992). The anionic glycan from the cactus Cereus peruvianus—Estrutural features and potential uses. Appl. Biochem. Biotech. 34/35:283.

    Google Scholar 

  • Amberger, L. A., Palmer, R. G., and Shoemaker, R. C. (1992). Analyses of culture-induced variation in soybean. Crop Sci. 32:11.

    Google Scholar 

  • Brettell, R. I. S., Dennis, E. S., Scowcroft, W. R., and Peacock, W. J. (1986). Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol. Gen. Genet. 202:235.

    Google Scholar 

  • Britton, N. L., and Rose, J. N. (1963). In The Cactaceae. Description and Illustrations of Plants of the Cactus Family, Vol. II, Dover, New York, pp. 3–20.

    Google Scholar 

  • Chawla, H. S. (1988). Isozyme modification during morphogenesis of callus from barley and wheat. Plant Cell Tissue Organ Cult. 12:299.

    Google Scholar 

  • Davies, P. A., Pallotta, M. A., Ryan, S. A., Scowcroft, W. R., and Larkin, P. J. (1986). Somaclonal variation in wheat: Genetic and cytogenetic characterization of alcohol dehydrogenase-1 mutants. Theor. Appl. Genet. 72:644.

    Google Scholar 

  • Eizenga, G. C., and Cornelius, P. L. (1991). Comparison of the isozyme variation in tall fescue parents and their somaclones. Euphytica 51:249.

    Google Scholar 

  • Evans, D. A., and Sharp, W. R. (1986). Somaclonal and gametoclonal variation. In Evans, D. A., Sharp, W. R., and Ammirato, P. V. (eds.), Handbook of Plant Cell Culture, Macmillan, New York, pp. 97–132.

    Google Scholar 

  • Gottlieb, L. D. (1984). Electrophoretic analysis of the phylogeny of the self-pollinating populations of Clarkia xantiana. Pl. Syst. Evol. 147:91.

    Google Scholar 

  • Hamrick, J. L. (1989). Isozymes and the analysis of genetic structure in plant populations. In Soltis, D. E., and Soltis, P. S. (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland, OR, pp. 87–105.

    Google Scholar 

  • Hamrick, J. L., Linhart, Y. B., and Mitton, J. B. (1979). Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu. Rev. Ecol. Syst. 10:173.

    Google Scholar 

  • Heinz, O. J., and Mee, G. W. P. (1971). Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am. J. Bot. 58:257.

    Google Scholar 

  • Hibberd, K. A., Walter, T., Green, C. E., and Gengenbach, B. G. (1980). Selection and characterization of a feedback-insensitive tissue culture of maize. Planta 148:183.

    Google Scholar 

  • Karp, A., and Bright, S. W. J. (1985). On the causes and origins of somaclonal variation. Oxford Surveys of Plant Molecular and Cell Biology, Vol. 2, Oxford University Press, pp. 199–243.

  • Klerk, G. H. de (1990). How to measure somaclonal variation. Acta Bot. Neerl 39:129.

    Google Scholar 

  • Larkin, P. J., and Scowcroft, W. R. (1981). Somaclonal variation—A novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197.

    Google Scholar 

  • Lassner, M. W., and Orton, T. J. (1983). Detection of somatic variation. In Tanksley, S. D., and Orton, T. J. (eds.), Isozymes in Plant Genetics and Breeding, Part A, Elsevier, Amsterdam, pp. 207–217.

    Google Scholar 

  • Lawyer, A. L., Berlyn, M. B., and Zelitch, I. (1980). Isolation and characterization of glycine hydroxamate resistant cell lines of Nicotiana tabacum. Plant Physiol. 66:334.

    Google Scholar 

  • Lee, T. T. (1972). Changes in indoleacetic acid oxidase isozymes in tobacco tissue after treatments with 2,4-dichlorophenoxyacetic acid. Plant Physiol. 49:957.

    Google Scholar 

  • Machado, M. F. P. S., and Prioli, A. J. (1996). Micropropagation of Cereus peruvianus Mill. (Cactaceae) by areole activation. In Vitro Cell. Dev. Biol.-Plant 32:199.

    Google Scholar 

  • Machado, M. F. P. S., Prioli, A. J., and Mangolin, C. A. (1993). Malate dehydrogenase (MDH; EC 1.1.1.37) isozymes in tissue and callus cultures of Cereus peruvianus (Cactaceae). Biochem. Genet. 31:167.

    Google Scholar 

  • Maliga, P., Kiss, Z. R., Dix, P. J., and Lázár, G. (1979). A streptomycin-resistant line of Nicotiana sylvestris unlable to flower. Mol. Gen. Genet. 172:13.

    Google Scholar 

  • Matern, U., Strobel, G., and Shepard, J. (1978). Reaction to phytotoxins in a potato population derived from mesophyll protoplasts. Proc. Natl. Acad. Sci. USA 75:4935.

    Google Scholar 

  • Mangolin, C. A., Prioli, A. J., and Machado, M. F. P. S. (1994a). Isozyme patterns in callus cultures and in plants regenerated from calli of Cereus peruvianus (Cactaceae). Biochem. Genet. 32:237.

    Google Scholar 

  • Mangolin, C. A., Prioli, A. J., and Machado, M. F. P. S. (1994b). Alcohol dehydrogenase isozymes as markers at 2,4-D × kin combinations in callus and regenerated plants of Cereus peruvianus (Cactaceae). Biochem. Genet. 32:191.

    Google Scholar 

  • Miesle, T. J., Proctor, A., and Lagrimini, L. M. (1991). Peroxidase activity, isozymes, and tissue localization in development highbush blueberry fruit. J. Am. Soc. Hort. Sci. 116:827.

    Google Scholar 

  • Nagai, C., Ahloowalia, B. S., and Tew, T. L. (1991). Somaclonal variants from an intergeneric hybrid: Saccharum spp. hybryd × Erianthus arundinaceum. Euphytica 53:193.

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Am. Nat. 106:283.

    Google Scholar 

  • Noh, E.-W., and Minocha, S. C. (1990). Pigment and isozyme variation in aspen shoots regenerated from callus cultures. Plant Cell Tissue Org. Cult. 23:39.

    Google Scholar 

  • Oliveira, S. A., Machado, M. F. P. S., Prioli, A. J., and Mangolin, C. A. (1995). In vitro propagation of Cereus peruvianus Mill. (Cactaceae). In Vitro Cell. Dev. Biol.-Plant 31:47.

    Google Scholar 

  • Parker, K. C., and Hamrick, J. L. (1992). Genetic diversity and clonal structure in a columnar cactus, Lophocereus schottii. Am. J. Bot. 79:86.

    Google Scholar 

  • Prioli, A. J., Mangolin, C. A., Oliveira, S. A., and Machado, M. F. P. S. (1995). Isozymes as markers of the effect of growth regulator combinations on callus tissues from long-term cultures of Cereus peruvianus (Cactaceae). Rev. Bras. Genet. 18:105.

    Google Scholar 

  • Ritzert, R. W., and Turin, B. A. (1970). Formation of peroxidase in response to indole-3-acetic acid in cultured tobacco cells. Phytochemistry 9:1701.

    Google Scholar 

  • Ryan, S. A., and Scowcroft, W. R. (1987). A somaclonal variant of wheat with additional β-amylase isozymes. Theor. Appl. Genet. 73:459.

    Google Scholar 

  • Scheinvar, L. (1985). Cactaceas, Monograph, Universidade Nacional Autonoma do México, Departamento Botanica, México.

  • Stalker, H. T., and Chapman, H. (1989). Scientific Management of Germoplasm: Characterization, Evaluation and Enhancement, IBPGR, Rome.

    Google Scholar 

  • Steel, R. G. D., and Torrie, J. H. (1980). Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Swofford, D. L., and Selander, R. B. (1981). Biosys-1: A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics, release 1.7. J. Hered. 72:281.

    Google Scholar 

  • Sung, Z. R., and Jacques, S. (1980). 5-Fluorouracil resistance in carrot cell cultures. Its use in studying the interaction of the pyrimidine and arginine pathways. Planta 148:389.

    Google Scholar 

  • Torquato, E. F. B., Prioli, A. J., and Machado, M. F. P. S. (1995). Differential alcohol dehydrogenase and malate dehydrogenase isozyme expression in long-term callus tissue cultures of Cereus peruvianus (Cactaceae). Biochem. Genet. 33:389.

    Google Scholar 

  • Turbak, A. F. (1979). Cellulose. In Kirk-Othmer (ed.). Encyclopedia of Chemical Technology, 3rd ed., Wiley-Interscience. New York.

    Google Scholar 

  • Viterbo, A., Rabinowitch, H. D., and Altman, A. (1992). Plant regeneration from callus cultures of Allium trifoliatum subsp. hirsutum and assessment of genetic stability by isozyme polymorphism. Plant Breed. 108:265.

    Google Scholar 

  • Worchok, Z. S., and Burleson, B. (1974). Isoperoxidase activity and induction in cultured tissues of wild carrot: A comparison of proembryos and embryos. Physiol. Plant. 31:73.

    Google Scholar 

  • Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangolin, C.A., Prioli, A.J. & Machado, M.F.P.S. Isozyme Variability in Plants Regenerated from Calli of Cereus peruvianus (Cactaceae). Biochem Genet 35, 189–204 (1997). https://doi.org/10.1023/A:1021906226291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021906226291

Navigation