Skip to main content
Log in

Evaluation of the influence of anisotropic indirect nuclear spin-spin coupling tensors on effective residual dipolar couplings for model peptides

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Residual dipolar couplings (RDCs) observed between nuclear spins in molecules in partially oriented media have become a valuable source of information for NMR spectroscopists seeking to structurally characterize biological macromolecules. Examination of the form of the direct (D) and indirect (J) nuclear spin-spin coupling Hamiltonians indicates that all observed RDCs contain an unknown contribution from the anisotropic part of JJ) in addition to the direct dipolar contribution, D PQ. Here, we evaluate the influence of ΔJ on RDCs through a series of DFT calculations on model peptides. Very small corrections to one-bond RDCs measured between heavy atoms in peptides and proteins are recommended: +0.51% for N-C′ spin pairs, and +0.45% for Cα-C′ spin pairs. The corrections to RDCs involving at least one proton are negligible. This latter point is likely to be equally applicable to nucleic acids and oligosaccharides in addition to peptides and proteins. Finally, the orientations of the J(N, C′) and J(Cα, C′) tensors in the molecular framework are reported for glycylglycine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autschbach, J. and Ziegler, T. (2000a) J. Chem. Phys., 113, 936-947.

    Google Scholar 

  • Autschbach, J. and Ziegler, T. (2000b) J. Chem. Phys., 113, 9410-6418.

    Google Scholar 

  • Baerends, E.J., Ellis, D.E. and Ros, P. (1973) Chem. Phys., 2, 41-51.

    Google Scholar 

  • Bagno, A. (2000) Chem. Eur. J., 6, 2925-2930.

    Google Scholar 

  • Barfield, M. (2002) J. Am. Chem. Soc., 124, 4158-4168.

    Google Scholar 

  • Bax, A., Chou, J.J. and Ramirez, B.E. (2002) In Encyclopedia of Nuclear Magnetic Resonance, Vol. 9, Grant, D.M. and Harris, R.K. (Eds.),Wiley Inc., Chichester, U.K., pp. 401-412.

    Google Scholar 

  • Becke, A.D. (1988) Phys. Rev. A, 38, 3098-3100.

    Google Scholar 

  • Brender, J.R., Taylor, D.M. and Ramamoorthy, A. (2001) J. Am. Chem. Soc., 123, 914-922.

    Google Scholar 

  • Brunner, E. (2001) Concepts Magn. Reson., 13, 238-259.

    Google Scholar 

  • Bryce, D.L. and Wasylishen, R.E. (2000) J. Am. Chem. Soc., 122, 3197-3205.

    Google Scholar 

  • Bryce, D.L. and Wasylishen, R.E. (2001) J. Biomol. NMR, 19, 371-375.

    Google Scholar 

  • Bryce, D.L., Wasylishen, R.E., Autschbach, J. and Ziegler, T. (2002) J. Am. Chem. Soc., 124, 4894-4900.

    Google Scholar 

  • Cai, M., Huang, Y. and Clore, G.M. (2001) J. Am. Chem. Soc., 123, 8642-8643.

    Google Scholar 

  • Case, D.A. (1999) J. Biomol. NMR, 15, 95-102.

    Google Scholar 

  • Case, D.A., Scheurer, C. and Brüschweiler, R. (2000) J. Am. Chem. Soc., 122, 10390-10397.

    Google Scholar 

  • Cheng, J.T., Edwards, J.C. and Ellis, P.D. (1990) J. Phys. Chem., 94, 553-561.

    Google Scholar 

  • Chou, J.J. and Bax, A. (2001) J. Am. Chem. Soc., 123, 3844-3845.

    Google Scholar 

  • Chou, J.J., Li, S., Klee, C.B. and Bax, A. (2001) Nat. Struct. Biol., 8, 990-997.

    Google Scholar 

  • Chu, P.J. and Gerstein, B.C. (1989) J. Chem. Phys., 91, 2081-2101.

    Google Scholar 

  • Chuck, R.J., Gillies, D.G., Randall, E.W. (1969) Mol. Phys., 16, 121-130.

    Google Scholar 

  • Cornilescu, G., Bax, A. and Case, D.A. (2000) J. Am. Chem. Soc., 122, 2168-2171.

    Google Scholar 

  • de Alba, E. and Tjandra, N. (2002) Prog. Nucl. Magn. Reson. Spectrosc., 40, 175-197.

    Google Scholar 

  • Dickson, R.M. and Ziegler, T. (1996) J. Phys. Chem., 100, 5286-5290.

    Google Scholar 

  • Eichele, K., Lumsden, M.D. and Wasylishen, R.E. (1993) J. Phys. Chem., 97, 8909-8916.

    Google Scholar 

  • Emsley, J.W. and Lindon, J.C. (1975) NMR Spectroscopy Using Liquid Crystal Solvents, Pergamon Press, Oxford.

    Google Scholar 

  • Engh, R.A. and Huber, R. (1991) Acta Crystallogr., A47, 392-400.

    Google Scholar 

  • Fonseca Guerra, C., Snijders, J.G., te Velde, G. and Baerends, E.J. (1998) Theor. Chem. Acc., 99, 391-403.

    Google Scholar 

  • Friesen, K.J. and Wasylishen, R.E. (1982) J. Magn. Reson., 48, 152-154.

    Google Scholar 

  • Grant, D.M. (1967) J. Am. Chem. Soc., 89, 2228-2229.

    Google Scholar 

  • Irving, C.S. and Lapidot, A. (1976) J. Chem. Soc. Chem. Commun., 43-44.

  • Jameson, C.J. (1987) In Multinuclear NMR, Chapter 4, Mason, J. (Ed.), Plenum Press, New York.

    Google Scholar 

  • Jeffrey, G.A. (1992) In Accurate Molecular Structures - Their Determination and Importance, Chapter 11, Domenicano, A. and Hargittai, I. (Eds.), Oxford University Press, New York.

    Google Scholar 

  • Khandogin, J. and Ziegler, T. (1999) Spectrochim. Acta, A55, 607-624.

    Google Scholar 

  • Kvick, Å., Al-Karaghouli, A.R. and Koetzle, T.F. (1977) Acta Crystallogr., B33, 3796-3801.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • Lounila, J. and Jokisaari, J. (1982) Prog. Nucl. Magn. Reson. Spectrosc., 15, 249-290.

    Google Scholar 

  • Lumsden, M.D., Wasylishen, R.E., Eichele, K., Schindler, M., Penner, G.H., Power, W.P. and Curtis, R.D. (1994) J. Am. Chem. Soc., 116, 1403-1413.

    Google Scholar 

  • Lynden-Bell, R.M. and Sheppard, N. (1962) Proc. Roy. Soc. London A, 269, 385-403.

    Google Scholar 

  • MacDonald, D. and Lu, P. (2002) Curr. Opin. Struct. Biol., 12, 337-343.

    Google Scholar 

  • Martin, G.J., Martin, M.L. and Gouesnard, J.-P. (1981) In NMR Basic Principles and Progress, Vol. 18, Diehl, P., Fluck, E. and Kosfeld, R. (Eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • McFarlane, W. (1966) Mol. Phys., 10, 603-604.

    Google Scholar 

  • McFarlane, W. (1967) J. Chem. Soc. A, 1660-1662.

  • Perdew, J.P. (1986) Phys. Rev. B, 33, 8822-8824; 34, 7406.

    Google Scholar 

  • Power, W.P., Wasylishen, R.E., Mooibroek, S., Pettitt, B.A. and Danchura, W. (1990) J. Phys. Chem., 94, 591-598.

    Google Scholar 

  • Prestegard, J.H. (1998) Nat. Struct. Biol., 5, 517-522 (NMR Suppl.).

    Google Scholar 

  • Prestegard, J.H., Al-Hashimi, H.M. and Tolman, J.R. (2000) Quart. Rev. Biophys., 33, 371-424.

    Google Scholar 

  • Prestegard, J.H., Jain, N.U. and Levery, S.B. (2002) In Encyclopedia of Nuclear Magnetic Resonance, Vol. 9, Grant, D.M. and Harris, R.K. (Eds.), Wiley Inc., Chichester, U.K., pp. 441-449.

    Google Scholar 

  • Randall, E.W. and Gillies, D.G. (1970) Prog. Nucl. Magn. Reson. Spectrosc., 6, 119-174.

    Google Scholar 

  • Roberts, J.E., Harbison, G.S., Munowitz, M.G., Herzfeld, J. and Griffin, R.G. (1987) J. Am. Chem. Soc., 109, 4163-4169.

    Google Scholar 

  • Simon, B. and Sattler, M. (2002) Angew. Chem. Int. Ed., 41, 437-440.

    Google Scholar 

  • Takeda, N., Kuroki, S., Kurosu, H. and Ando, J. (1999) Biopolymers, 50, 61-69.

    Google Scholar 

  • te Velde, G. and Baerends, E.J. (1992) J. Comput. Phys., 99, 84-98.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111-1114.

    Google Scholar 

  • Tolman, J.R. (2001) Curr. Opin. Struct. Biol., 11, 532-539.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279-9283.

    Google Scholar 

  • Tran-Dinh, S., Fermandjian, S., Sala, E., Mermet-Bouvier, R., Cohen, M. and Fromageot, P. (1974) J. Am. Chem. Soc., 96, 1484-1493.

    Google Scholar 

  • Tran-Dinh, S., Fermandjian, S., Sala, E., Mermet-Bouvier, R. and Fromageot, P. (1975) J. Am. Chem. Soc., 97, 1267-1269.

    Google Scholar 

  • Vaara, J., Jokisaari, J., Wasylishen, R.E. and Bryce, D.L. (2002) Prog. Nucl. Magn. Reson. Spectrosc., 41, 233-304.

    Google Scholar 

  • Vaara, J., Kaski, J., Jokisaari, J. and Diehl, P. (1997) J. Phys. Chem. A, 101, 5069-5081.

    Google Scholar 

  • Versluis, L. and Ziegler, T. (1988) J. Chem. Phys., 88, 322-328.

    Google Scholar 

  • Vosko, S.H., Wilk, L. and Nusair, M. (1980) Can. J. Phys., 58, 1200-1211.

    Google Scholar 

  • Wasylishen, R.E. (1977) In Annual Reports on NMR SpectroscopyVol. 7, (Ed.) Webb, G.A., Academic Press, London, pp. 245-291.

    Google Scholar 

  • Wasylishen, R.E. (1996) In Encyclopedia of Nuclear Magnetic Resonance, Grant, D.M. and Harris, R.K. (Eds.), Wiley Inc., Chichester, U.K., pp. 1685-1695.

    Google Scholar 

  • Wasylishen, R.E. (2002) In Encyclopedia of Nuclear Magnetic Resonance, Vol. 9, Grant, D.M. and Harris, R.K. (Eds.), Wiley Inc., Chichester, U.K., pp. 274-282.

    Google Scholar 

  • Wei, Y., Lee, D.-K. and Ramamoorthy, A. (2001) J. Am. Chem. Soc., 123, 6118-6126.

    Google Scholar 

  • Witanowski, M., Stefaniak, L. and Webb, G.A. (1977) In Annual Reports on NMR SpectroscopyVol. 7, Webb, G.A. (Ed.), Academic Press, London, pp. 117-244.

    Google Scholar 

  • Yeh, H.J.C., Ziffer, H., Jerina, D.M., Boyd, D.R. (1973) J. Am. Chem. Soc., 95, 2741-2743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick E. Wasylishen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryce, D.L., Wasylishen, R.E. Evaluation of the influence of anisotropic indirect nuclear spin-spin coupling tensors on effective residual dipolar couplings for model peptides. J Biomol NMR 25, 73–78 (2003). https://doi.org/10.1023/A:1021903427920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021903427920

Navigation